首页> 外文期刊>Data & Knowledge Engineering >A framework for multidimensional design of data warehouses from ontologies
【24h】

A framework for multidimensional design of data warehouses from ontologies

机译:基于本体的数据仓库的多维设计框架

获取原文
获取原文并翻译 | 示例

摘要

The data warehouse design task needs to consider both the end-user requirements and the organization data sources. For this reason, the data warehouse design has been traditionally considered a reengineering process, guided by requirements, from the data sources. Most current design methods available demand highly-expressive end-user requirements as input, in order to carry out the exploration and analysis of the data sources. However, the task to elicit the end-user information requirements might result in a thorough task. Importantly, in the data warehousing context, the analysis capabilities of the target data warehouse depend on what kind of data is available in the data sources. Thus, in those scenarios where the analysis capabilities of the data sources are not (fully) known, it is possible to help the data warehouse designer to identify and elicit unknown analysis capabilities.rnIn this paper we introduce a user-centered approach to support the end-user requirements elicitation and the data warehouse multidimensional design tasks. Our proposal is based on a reengineering process that derives the multidimensional schema from a conceptual formalization of the domain. It starts by fully analyzing the data sources to identify, without considering requirements yet, the multidimensional knowledge they capture (i.e., data likely to be analyzed from a multidimensional point of view). Next, we propose to exploit this knowledge in order to support the requirements elicitation task. In this way, we are already conciliating requirements with the data sources, and we are able to fully exploit the analysis capabilities of the sources. Once requirements are clear, we automatically create the data warehouse conceptual schema according to the multidimensional knowledge extracted from the sources.
机译:数据仓库设计任务需要同时考虑最终用户需求和组织数据源。因此,传统上一直将数据仓库设计视为根据需求从数据源进行重新设计的过程。现有的大多数设计方法都需要高度表达的最终用户要求作为输入,以便进行数据源的探索和分析。但是,引起最终用户信息需求的任务可能会导致一项彻底的任务。重要的是,在数据仓库环境中,目标数据仓库的分析功能取决于数据源中可用的数据类型。因此,在那些(完全)不了解数据源分析能力的情况下,可以帮助数据仓库设计人员识别和激发未知的分析能力。在本文中,我们介绍了一种以用户为中心的方法来支持数据分析。最终用户需求启发和数据仓库多维设计任务。我们的建议基于重新设计过程,该过程从域的概念形式化衍生出多维模式。它首先全面分析数据源,以在不考虑需求的情况下识别它们捕获的多维知识(即,可能从多维角度分析的数据)。接下来,我们建议利用这些知识来支持需求启发任务。这样,我们已经在将需求与数据源进行协调,并且我们能够充分利用数据源的分析功能。明确要求后,我们将根据从源中提取的多维知识自动创建数据仓库概念架构。

著录项

  • 来源
    《Data & Knowledge Engineering》 |2010年第11期|p.1138-1157|共20页
  • 作者

    Oscar Romero; Alberto Abello;

  • 作者单位

    Universitat Politecnica de Catalunya - BarcelonaTech, Dept. Llenguatges i Sistemes Informatics, Barcelona, Spain;

    rnUniversitat Politecnica de Catalunya - BarcelonaTech, Dept. d'Enginyeria de Serveis i Sistemes d'lnformacio, Barcelona, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    OLAP; multidimensional design; ontologies;

    机译:OLAP;多维设计;本体论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号