首页> 外文期刊>Data & Knowledge Engineering >A regression-based approach for mining user movement patterns from random sample data
【24h】

A regression-based approach for mining user movement patterns from random sample data

机译:基于回归的方法从随机样本数据中挖掘用户移动模式

获取原文
获取原文并翻译 | 示例

摘要

Mobile computing systems usually express a user movement trajectory as a sequence of areas that capture the user movement trace. Given a set of user movement trajectories, user movement patterns refer to the sequences of areas through which a user frequently travels. In an attempt to obtain user movement patterns for mobile applications, prior studies explore the problem of mining user movement patterns from the movement logs of mobile users. These movement logs generate a data record whenever a mobile user crosses base station coverage areas. However, this type of movement log does not exist in the system and thus generates extra overheads. By exploiting an existing log, namely, call detail records, this article proposes a Regression-based approach for mining User Movement Patterns (abbreviated as RUMP). This approach views call detail records as random sample trajectory data, and thus, user movement patterns are represented as movement functions in this article. We propose algorithm LS (standing for Large Sequence) to extract the call detail records that capture frequent user movement behaviors. By exploring the spatio-temporal locality of continuous movements (i.e., a mobile user is likely to be in nearby areas if the time interval between consecutive calls is small), we develop algorithm TC (standing for Time Clustering) to cluster call detail records. Then, by utilizing regression analysis, we develop algorithm MF (standing for Movement Function) to derive movement functions. Experimental studies involving both synthetic and real datasets show that RUMP is able to derive user movement functions close to the frequent movement behaviors of mobile users.
机译:移动计算系统通常将用户运动轨迹表示为捕获用户运动轨迹的一系列区域。给定一组用户运动轨迹,用户运动模式指的是用户经常旅行通过的区域序列。为了获得移动应用程序的用户移动模式,现有研究探索了从移动用户的移动日志中挖掘用户移动模式的问题。每当移动用户越过基站覆盖范围时,这些移动日志就会生成数据记录。但是,这种类型的移动日志在系统中不存在,因此会产生额外的开销。通过利用现有的日志(即呼叫详细记录),本文提出了一种基于回归的方法来挖掘用户移动模式(缩写为RUMP)。这种方法将呼叫详细记录视为随机样本轨迹数据,因此,在本文中,用户移动模式被表示为移动函数。我们提出算法LS(代表大序列)来提取捕获频繁用户移动行为的呼叫详细记录。通过探索连续运动的时空局部性(即,如果连续呼叫之间的时间间隔较小,移动用户可能会在附近区域),我们开发了算法TC(代表时间聚类)对呼叫详细记录进行聚类。然后,通过利用回归分析,我们开发了算法MF(代表运动函数)来导出运动函数。涉及合成数据集和实际数据集的实验研究表明,RUMP能够推导接近移动用户频繁移动行为的用户移动功能。

著录项

  • 来源
    《Data & Knowledge Engineering》 |2011年第1期|p.1-20|共20页
  • 作者

    Chih-Chieh Hung; Wen-Chih Peng;

  • 作者单位

    Department of Computer Science, National Chiao Tung University, Taiwan, ROC;

    Department of Computer Science, National Chiao Tung University, Taiwan, ROC No. 1001 University Road, Hsinchu, Taiwan 300, ROC;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    user movement patterns; data mining; mobile data management;

    机译:用户移动方式;数据挖掘;移动数据管理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号