首页> 外文期刊>Data & Knowledge Engineering >An incremental approach to attribute reduction from dynamic incomplete decision systems in rough set theory
【24h】

An incremental approach to attribute reduction from dynamic incomplete decision systems in rough set theory

机译:粗糙集理论中动态不完全决策系统属性约简的一种增量方法

获取原文
获取原文并翻译 | 示例

摘要

Attribute reduction is an important preprocessing step in data mining and knowledge discovery. The effective computation of an attribute reduct has a direct bearing on the efficiency of knowledge acquisition and various related tasks. In real-world applications, some attribute values for an object may be incomplete and an object set may vary dynamically in the knowledge representation systems, also called decision systems in rough set theory. There are relatively few studies on attribute reduction in such systems. This paper mainly focuses on this issue. For the immigration and emigration of a single object in the incomplete decision system, an incremental attribute reduction algorithm is developed to compute a new attribute reduct, rather than to obtain the dynamic system as a new one that has to be computed from scratch. In particular, for the immigration and emigration of multiple objects in the system, another incremental reduction algorithm guarantees that a new attribute reduct can be computed on the fly, which avoids some re-computations. Compared with other attribute reduction algorithms, the proposed algorithms can effectively reduce the time required-for reduct computations without losing the classification performance. Experiments on different real-life data sets are conducted to test and demonstrate the efficiency and effectiveness of the proposed algorithms. (C) 2015 Elsevier B.V. All rights reserved.
机译:属性约简是数据挖掘和知识发现中重要的预处理步骤。属性归约的有效计算直接关系到知识获取和各种相关任务的效率。在实际应用中,对象的某些属性值可能不完整,并且对象集在知识表示系统(在粗糙集理论中也称为决策系统)中可能会动态变化。在此类系统中,关于属性约简的研究相对较少。本文主要针对这个问题。对于不完整决策系统中单个对象的迁移和迁移,开发了一种增量属性约简算法来计算新的属性约简,而不是获得动态系统作为必须从头开始计算的新系统。特别是,对于系统中多个对象的迁移和迁移,另一种增量约简算法保证了可以即时计算新的属性约简,从而避免了重新计算。与其他属性约简算法相比,所提算法可以有效地减少约简运算所需的时间,而又不会损失分类性能。进行了不同现实数据集的实验,以测试和证明所提出算法的效率和有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号