首页> 外文期刊>Cybernetics, IEEE Transactions on >Task-Based Decomposition of Factored POMDPs
【24h】

Task-Based Decomposition of Factored POMDPs

机译:基于任务的分解式POMDP分解

获取原文
获取原文并翻译 | 示例

摘要

Recently, partially observable Markov decision processes (POMDP) solvers have shown the ability to scale up significantly using domain structure, such as factored representations. In many domains, the agent is required to complete a set of independent tasks. We propose to decompose a factored POMDP into a set of restricted POMDPs over subsets of task relevant state variables. We solve each such model independently, acquiring a value function. The combination of the value functions of the restricted POMDPs is then used to form a policy for the complete POMDP. We explain the process of identifying variables that correspond to tasks, and how to create a model restricted to a single task, or to a subset of tasks. We demonstrate our approach on a number of benchmarks from the factored POMDP literature, showing that our methods are applicable to models with more than 100 state variables.
机译:最近,部分可观察的马尔可夫决策过程(POMDP)求解器显示了使用域结构(例如因子表示)进行显着扩展的能力。在许多域中,要求代理完成一组独立的任务。我们建议将分解后的POMDP分解为与任务相关的状态变量子集上的一组受限POMDP。我们独立求解每个这样的模型,获得一个值函数。然后,将受限制的POMDP的值函数的组合用于形成完整POMDP的策略。我们解释了识别与任务相对应的变量的过程,以及如何创建仅限于单个任务或任务子集的模型。我们从分解的POMDP文献中的许多基准上证明了我们的方法,表明我们的方法适用于具有100多个状态变量的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号