首页> 外文期刊>Cybernetics, IEEE Transactions on >Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification
【24h】

Discriminative Dictionary Learning With Two-Level Low Rank and Group Sparse Decomposition for Image Classification

机译:具有两级低秩和组稀疏分解的判别字典学习用于图像分类

获取原文
获取原文并翻译 | 示例

摘要

Discriminative dictionary learning (DDL) framework has been widely used in image classification which aims to learn some class-specific feature vectors as well as a representative dictionary according to a set of labeled training samples. However, interclass similarities and intraclass variances among input samples and learned features will generally weaken the representability of dictionary and the discrimination of feature vectors so as to degrade the classification performance. Therefore, how to explicitly represent them becomes an important issue. In this paper, we present a novel DDL framework with two-level low rank and group sparse decomposition model. In the first level, we learn a class-shared and several class-specific dictionaries, where a low rank and a group sparse regularization are, respectively, imposed on the corresponding feature matrices. In the second level, the class-specific feature matrix will be further decomposed into a low rank and a sparse matrix so that intraclass variances can be separated to concentrate the corresponding feature vectors. Extensive experimental results demonstrate the effectiveness of our model. Compared with the other state-of-the-arts on several popular image databases, our model can achieve a competitive or better performance in terms of the classification accuracy.
机译:判别词典学习(DDL)框架已广泛用于图像分类中,旨在根据一组标记的训练样本来学习一些特定于类别的特征向量以及代表性词典。但是,输入样本和学习特征之间的类间相似性和类内差异通常会削弱字典的可表示性和特征向量的辨别力,从而降低分类性能。因此,如何明确表示它们成为重要的问题。在本文中,我们提出了一种具有两级低秩和组稀疏分解模型的新颖DDL框架。在第一级中,我们学习一个共享类和几个特定类的字典,其中低阶和稀疏正则化分别强加给相应的特征矩阵。在第二级中,特定于类别的特征矩阵将进一步分解为低秩和稀疏矩阵,以便可以将类别内方差分开以集中相应的特征向量。大量的实验结果证明了我们模型的有效性。与几个流行的图像数据库上的其他最新技术相比,我们的模型在分类精度方面可以达到有竞争力的或更好的性能。

著录项

  • 来源
    《Cybernetics, IEEE Transactions on》 |2017年第11期|3758-3771|共14页
  • 作者单位

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi’an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi’an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International Research Center for Intelligent Perception and Computation, Xidian University, Xi’an, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dictionaries; Feature extraction; Sparse matrices; Robustness; Matrix decomposition; Training; Cybernetics;

    机译:字典;特征提取;稀疏矩阵;稳健性;矩阵分解;训练;网络论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号