首页> 外文期刊>Cybernetics, IEEE Transactions on >Robust Object Tracking via Key Patch Sparse Representation
【24h】

Robust Object Tracking via Key Patch Sparse Representation

机译:通过关键补丁稀疏表示进行稳健的对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Many conventional computer vision object tracking methods are sensitive to partial occlusion and background clutter. This is because the partial occlusion or little background information may exist in the bounding box, which tends to cause the drift. To this end, in this paper, we propose a robust tracker based on key patch sparse representation (KPSR) to reduce the disturbance of partial occlusion or unavoidable background information. Specifically, KPSR first uses patch sparse representations to get the patch score of each patch. Second, KPSR proposes a selection criterion of key patch to judge the patches within the bounding box and select the key patch according to its location and occlusion case. Third, KPSR designs the corresponding contribution factor for the sampled patches to emphasize the contribution of the selected key patches. Comparing the KPSR with eight other contemporary tracking methods on 13 benchmark video data sets, the experimental results show that the KPSR tracker outperforms classical or state-of-the-art tracking methods in the presence of partial occlusion, background clutter, and illumination change.
机译:许多常规的计算机视觉对象跟踪方法对部分遮挡和背景杂波很敏感。这是因为在边界框中可能存在部分遮挡或背景信息很少,这往往会导致漂移。为此,在本文中,我们提出了一种基于关键补丁稀疏表示(KPSR)的鲁棒跟踪器,以减少部分遮挡或不可避免的背景信息的干扰。具体来说,KPSR首先使用补丁稀疏表示来获取每个补丁的补丁得分。其次,KPSR提出了关键补丁的选择标准,以判断边界框内的补丁,并根据其位置和遮挡情况选择关键补丁。第三,KPSR为采样补丁设计相应的贡献因子,以强调所选关键补丁的贡献。将KPSR与其他13种基准视频数据集上的其他八种现代跟踪方法进行比较,实验结果表明,在存在部分遮挡,背景杂波和照明变化的情况下,KPSR跟踪器的性能优于经典或最新的跟踪方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号