首页> 外文期刊>Cybernetics, IEEE Transactions on >Toward Occlusion Handling in Visual Tracking via Probabilistic Finite State Machines
【24h】

Toward Occlusion Handling in Visual Tracking via Probabilistic Finite State Machines

机译:通过概率有限状态机来抵御视觉跟踪中的遮挡处理

获取原文
获取原文并翻译 | 示例

摘要

Visual tracking has been an active research area in computer vision for decades. However, the performance of existing techniques is still challenged by various factors, such as occlusion and change in appearance of the target. In this paper, we propose a novel framework based on correlation filtering and probabilistic finite state machines (FSMs) to handle occlusion. In our tracking framework, the target is partitioned into several parts whose occlusion states are automatically detected. A set of states for the target is defined in terms of the combination of the parts' occlusion states. The probabilistic FSMs are then used to model the target's state transitions so as to reduce the effect of noise in the output response maps of correlation filters. Our target model's update strategy is adaptable online depending on the estimated state of the target. Extensive experiments have been performed on several public benchmarks and the proposed algorithm achieves competitive results against state-of-the-art techniques.
机译:几十年来,视觉跟踪一直是计算机愿景中的活跃研究区域。然而,现有技术的性能仍然受到各种因素的挑战,例如遮挡和目标外观的变化。在本文中,我们提出了一种基于相关滤波和概率有限状态机(FSMS)的新颖框架来处理闭塞。在我们的跟踪框架中,目标被划分为几个部分,其侦听状态被自动检测到。目标的一组状态在零件闭塞状态的组合方面定义。然后使用概率的FSMS来模拟目标的状态转换,以便降低相关滤波器的输出响应图中的噪声效果。我们的目标模型的更新策略在线适应,具体取决于目标的估计状态。已经对若干公共基准进行了广泛的实验,所提出的算法实现了竞争力的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号