首页> 外文期刊>Cybernetics, IEEE Transactions on >Probabilistic Rank-One Discriminant Analysis via Collective and Individual Variation Modeling
【24h】

Probabilistic Rank-One Discriminant Analysis via Collective and Individual Variation Modeling

机译:概率级别通过集体和单个变异建模判别分析

获取原文
获取原文并翻译 | 示例

摘要

Linear discriminant analysis (LDA) is a classical supervised subspace learning technique that has wide applications. However, it is designed for vector only, which cannot exploit the tensor structures and may lead to suboptimal results when dealing with tensorial data. To address this problem, several multilinear LDA (MLDA) methods have been proposed to learn the subspaces from tensors. By exploiting the tensor structures, they achieve compact subspace representations, reduced parameter sizes, and improved robustness against the small sample size problem. However, existing MLDA methods do not take data uncertainty into account, fail to converge properly, or have to introduce additional tuning parameters for good convergence properties. In this paper, we therefore solve these limitations by proposing a probabilistic MLDA method for matrix inputs. Specifically, we propose a new generative model to incorporate structural information into the probabilistic framework, where each observed matrix is represented as a linear combination of collective and individual rank-one matrices. This provides our method with both the expressiveness of capturing discriminative features and nondiscriminative noise, and the capability of exploiting the 2-D tensor structures. To overcome the convergence problem of existing MLDAs, we develop an EM-type algorithm for parameter estimation, which has closed-form solutions with convergence guarantees. Experimental results on real-world datasets show the superiority of the proposed method to other probabilistic and MLDA variants.
机译:线性判别分析(LDA)是一种具有广泛应用的经典监督子空间学习技术。然而,它仅设计用于载体,这不能利用张量结构,并且可以在处理姿势数据时导致次优效果。为了解决这个问题,已经提出了几种多线性LDA(MLDA)方法来学习来自张量的子空间。通过利用张量结构,它们实现了紧凑的子空间表示,减少参数尺寸,并改善了对小样本大小问题的改进的鲁棒性。但是,现有的MLDA方法不考虑数据不确定性,未能妥善收敛,或者必须为良好的收敛性引入额外的调谐参数。在本文中,我们通过提出用于矩阵输入的概率MLDA方法来解决这些限制。具体地,我们提出了一种新的生成模型来将结构信息纳入概率框架,其中每个观察到的矩阵被表示为集体和单个秩的线性组合。这为我们的方法提供了捕获歧视特征和非刺激性噪声的表现力,以及利用2-D张量结构的能力。为了克服现有MLDA的收敛问题,我们开发了一种参数估计的EM型算法,其具有收敛保证的封闭式解决方案。实验结果对现实世界数据集显示了所提出的方法对其他概率和MLDA变体的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号