首页> 外文期刊>Cybernetics, IEEE Transactions on >A Discrete Multiobjective Particle Swarm Optimizer for Automated Assembly of Parallel Cognitive Diagnosis Tests
【24h】

A Discrete Multiobjective Particle Swarm Optimizer for Automated Assembly of Parallel Cognitive Diagnosis Tests

机译:用于平行认知诊断测试的自动组装的离散多目标粒子群优化器

获取原文
获取原文并翻译 | 示例

摘要

Parallel test assembly has long been an important yet challenging topic in educational assessment. Cognitive diagnosis models (CDMs) are a new class of assessment models and have drawn increasing attention for being able to measure examinees' ability in detail. However, few studies have been devoted to the parallel test assembly problem in CDMs (CDM-PTA). To fill the gap, this paper models CDM-PTA as a subset-based bi-objective combinatorial optimization problem. Given an item bank, it aims to find a required number of tests that achieve optimal but balanced diagnostic performance, while satisfying important practical requests in the aspects of test length, item type distribution, and overlapping proportion. A set-based multiobjective particle swarm optimizer based on decomposition (S-MOPSO/D) is proposed to solve the problem. To coordinate with the property of CDM-PTA, S-MOPSO/D utilizes an assignment-based representation scheme and a constructive learning strategy. Through this, promising solutions can be built efficiently based on useful assignment patterns learned from personal and collective search experience on neighboring scalar problems. A heuristic constraint handling strategy is also developed to further enhance the search efficiency. Experimental results in comparison with three representative approaches validate that the proposed algorithm is effective and efficient.
机译:并行测试组装长期以来一直是教育评估中重要但具有挑战性的话题。认知诊断模型(CDMS)是一类新的评估模型,并提高了能够详细衡量考生的能力。然而,很少有研究已经致力于CDMS(CDM-PTA)中的平行试验组装问题。为了填补差距,本文模拟了CDM-PTA作为基于子集的双目标组合优化问题。鉴于项目银行,它旨在找到所需数量的测试,实现最佳但平衡的诊断​​性能,同时满足测试长度,项目类型分布和重叠比例方面的重要实际请求。提出了一种基于分解(S-MOPSO / D)的基于集基的多目标粒子群优化器来解决问题。为了与CDM-PTA的性质协调,S-MOPSO / D利用基于分配的代表方案和建设性的学习策略。通过这一点,可以基于从个人和集体搜索体验的有用的分配模式来建立有效的解决方案,从个人和集体搜索体验上获取相邻的标量问题。还开发了一种启发式约束处理策略,以进一步提高搜索效率。与三种代表方法相比的实验结果验证了所提出的算法是有效和有效的。

著录项

  • 来源
    《Cybernetics, IEEE Transactions on》 |2019年第7期|2792-2805|共14页
  • 作者单位

    Sun Yat Sen Univ Dept Psychol Guangzhou 510006 Guangdong Peoples R China;

    Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Guangdong Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 51006 Guangdong Peoples R China|Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Guangdong Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 51006 Guangdong Peoples R China|Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Guangdong Peoples R China;

    South China Univ Technol Sch Comp Sci & Engn Guangzhou 51006 Guangdong Peoples R China|Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cognitive diagnosis models (CDMs); multiobjective; parallel test assembly; particle swarm optimizer (PSO);

    机译:认知诊断模型(CDMS);多目标;并联试验组件;粒子群优化器(PSO);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号