首页> 外文期刊>Cybernetics, IEEE Transactions on >Small Fault Detection for a Class of Closed-Loop Systems via Deterministic Learning
【24h】

Small Fault Detection for a Class of Closed-Loop Systems via Deterministic Learning

机译:基于确定性学习的一类闭环系统小故障检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, based on the deterministic learning (DL) theory, an approach for detection for small faults in a class of nonlinear closed-loop systems is proposed. First, the DL-based neural control approach and identification approach are employed to extract the knowledge of the control effort that compensates the fault dynamics (change of the control effort) and the fault dynamics (the change of system dynamics due to fault). Second, two types of residuals are constructed. One is to measure the change of system dynamics, another one is to measure change of the control effort. By combining these residuals, an enhanced residual is generated, in which the fault dynamics and the control effort are combined to diagnose the fault. It is shown that the major fault information is compensated by the control, and the major fault information is double in the enhanced residual. Therefore, the fault information in the diagnosis residual is enhanced. Finally, an analysis of the fault detectability condition of the diagnosis scheme is given. Simulation studies are included to demonstrate the effectiveness of the approach.
机译:本文基于确定性学习理论,提出了一种用于一类非线性闭环系统中的小故障检测方法。首先,基于DL的神经控制方法和识别方法被用来提取控制工作量的知识,该知识可补偿故障动态(控制工作量的变化)和故障动态(由于故障引起的系统动态变化)。第二,构造两种类型的残差。一种是测量系统动力学的变化,另一种是测量控制工作量的变化。通过组合这些残差,可以生成增强的残差,其中将故障动态特性和控制工作结合起来以诊断故障。结果表明,主要故障信息可以通过控制得到补偿,在增强残差中,主要故障信息可以得到两倍的补偿。因此,增强了诊断残差中的故障信息。最后,对诊断方案的故障可检测性条件进行了分析。包括仿真研究以证明该方法的有效性。

著录项

  • 来源
    《Cybernetics, IEEE Transactions on》 |2019年第3期|897-906|共10页
  • 作者单位

    Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China|Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China;

    South China Univ Technol, Sch Automat, Guangzhou 510641, Guangdong, Peoples R China|South China Univ Technol, Ctr Control & Optimizat, Guangzhou 510641, Guangdong, Peoples R China;

    Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia;

    Univ New South Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia;

    Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China|Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Closed-loop systems; deterministic learning (DL); fault detection; neural networks (NNs);

    机译:闭环系统;确定性学习(DL);故障检测;神经网络(NN);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号