首页> 外文期刊>Cybernetics, IEEE Transactions on >3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation
【24h】

3-D Fully Convolutional Networks for Multimodal Isointense Infant Brain Image Segmentation

机译:3-D全卷积网络用于多模式等强度婴儿脑图像分割

获取原文
获取原文并翻译 | 示例

摘要

Accurate segmentation of infant brain images into different regions of interest is one of the most important fundamental steps in studying early brain development. In the isointense phase (approximately 6-8 months of age), white matter and gray matter exhibit similar levels of intensities in magnetic resonance (MR) images, due to the ongoing myelination and maturation. This results in extremely low tissue contrast and thus makes tissue segmentation very challenging. Existing methods for tissue segmentation in this isointense phase usually employ patch-based sparse labeling on single modality. To address the challenge, we propose a novel 3-D multimodal fully convolutional network (FCN) architecture for segmentation of isointense phase brain MR images. Specifically, we extend the conventional FCN architectures from 2-D to 3-D, and, rather than directly using FCN, we intuitively integrate coarse (naturally high-resolution) and dense (highly semantic) feature maps to better model tiny tissue regions, in addition, we further propose a transformation module to better connect the aggregating layers; we also propose a fusion module to better serve the fusion of feature maps. We compare the performance of our approach with several baseline and state-of-the-art methods on two sets of isointense phase brain images. The comparison results show that our proposed 3-D multimodal FCN model outperforms all previous methods by a large margin in terms of segmentation accuracy. In addition, the proposed framework also achieves faster segmentation results compared to all other methods. Our experiments further demonstrate that: 1) carefully integrating coarse and dense feature maps can considerably improve the segmentation performance; 2) batch normalization can speed up the convergence of the networks, especially when hierarchical feature aggregations occur; and 3) integrating multimodal information can further boost the segmentation performance.
机译:将婴儿大脑图像准确分割成不同的关注区域是研究早期大脑发育的最重要的基本步骤之一。在等强度阶段(大约6-8个月大),由于持续的髓鞘形成和成熟,白质和灰质在磁共振(MR)图像中显示出相似的强度水平。这导致极低的组织对比度,从而使组织分割非常具有挑战性。等强度阶段中用于组织分割的现有方法通常在单个模态上使用基于补丁的稀疏标记。为了解决这一挑战,我们提出了一种新颖的3-D多模态全卷积网络(FCN)体系结构,用于等强度相脑MR图像的分割。具体来说,我们将传统的FCN架构从2-D扩展到3-D,并且不是直接使用FCN,而是直观地集成了粗糙(自然高分辨率)和密集(高度语义)特征图,以更好地对微小组织区域进行建模,另外,我们还提出了一个转换模块,以更好地连接聚合层。我们还提出了融合模块,以更好地服务于特征图的融合。我们在两组等强度相的脑部图像上比较了我们的方法与几种基线和最新方法的性能。比较结果表明,我们提出的3-D多模态FCN模型在分割精度方面大大优于所有以前的方法。此外,与所有其他方法相比,该框架还实现了更快的分割结果。我们的实验进一步证明:1)仔细整合粗糙和密集的特征图可以大大提高分割性能; 2)批量归一化可以加快网络的收敛速度,特别是在发生分层特征聚合时; 3)整合多峰信息可以进一步提高分割效果。

著录项

  • 来源
    《Cybernetics, IEEE Transactions on》 |2019年第3期|1123-1136|共14页
  • 作者单位

    Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27510 USA|Univ N Carolina, Dept Radiol, Chapel Hill, NC 27510 USA|Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27510 USA;

    Univ N Carolina, Dept Radiol, Chapel Hill, NC 27510 USA|Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27510 USA;

    Univ N Carolina, Dept Radiol, Chapel Hill, NC 27510 USA|Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27510 USA;

    Univ N Carolina, Dept Radiol, Chapel Hill, NC 27510 USA|Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27510 USA;

    Univ N Carolina, Dept Radiol, Chapel Hill, NC 27510 USA|Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27510 USA;

    Univ N Carolina, Dept Radiol, Chapel Hill, NC 27510 USA|Univ N Carolina, Biomed Res Imaging Ctr, Chapel Hill, NC 27510 USA|Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3-D fully convolutional network (3D-FCN); brain MR image; isointense phase; multimodality MR images; tissue segmentation;

    机译:3-D全卷积网络(3D-FCN);脑MR图像;等强度相位;多峰MR图像;组织分割;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号