首页> 外文期刊>Cryptography and Communications >A new class of Fibonacci sequence based error correcting codes
【24h】

A new class of Fibonacci sequence based error correcting codes

机译:新型基于斐波那契数列的纠错码

获取原文
获取原文并翻译 | 示例

摘要

A new class of matrices is introduced for use in error control coding. This extends previous results on the class of Fibonacci error correcting codes. For a given integer p, a (p + 1) x (p + 1) binary matrix M-p is given whose nonzero entries are located either on the superdiagonal or the last row of the matrix. The matrices M-p(n) and M-p(-n), the nth power of M-p and its inverse, are employed as the encoding and decoding matrices, respectively. It is shown that for sufficiently large n, independent of the message matrix M, relations exist among the elements of the encoded matrix E = M x M-p(n). These relations play a key role in the error detection and correction.
机译:引入了一种新的矩阵,用于错误控制编码。这扩展了斐波那契纠错码类别的先前结果。对于给定的整数p,给出(p + 1)x(p +1)二进制矩阵M-p,其非零项位于矩阵的超对角线或最后一行。矩阵M-p(n)和M-p(-n),即M-p的n次幂及其倒数,分别用作编码和解码矩阵。可以看出,对于足够大的n,与消息矩阵M无关,在编码矩阵E = M x M-p(n)的元素之间存在关系。这些关系在错误检测和纠正中起着关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号