首页> 外文期刊>Cryptography and Communications >Perfect sequences over the quaternions and (4n,2,4n,2n)-relative difference sets in C_n × Q_8
【24h】

Perfect sequences over the quaternions and (4n,2,4n,2n)-relative difference sets in C_n × Q_8

机译:C_n×Q_8中四元数和(4n,2,4n,2n)相对差集的完美序列

获取原文
获取原文并翻译 | 示例

摘要

Perfect sequences over general quaternions were introduced in 2009 by Kuznetsov. The existence of perfect sequences of increasing lengths over the basic quaternions Q(8) = {+/- 1, +/- i, +/- j, +/- k}was established in 2012 by Barrera Acevedo and Hall. The aim of this paper is to prove a 1-1 correspondence between perfect sequences of length n over Q(8) boolean OR qQ(8) with q = (1 + i + j + k)/2, and (4n, 2, 4n, 2n)-relative difference sets in C-n x Q(8) with forbidden subgroup C-2; here C-m is a cyclic group of order m. We show that if n = p(a) + 1 for a prime p and integer a = 0 with n = 2 mod 4, then there exists a (4n, 2, 4n, 2n)-relative different set in C-n x Q(8) with forbidden subgroup C-2. Lastly, we show that every perfect sequence of length n over Q(8) boolean OR q Q(8) yields a Hadamard matrix of order 4n (and a quaternionic Hadamard matrix of order n over Q(8) boolean OR qQ(8)).
机译:库兹涅佐夫(Kuznetsov)于2009年引入了关于一般四元数的完美序列。 Barrera Acevedo和Hall在2012年建立了基本四元数Q(8)= {+/- 1,+/- i,+/- j,+/- k}上长度增加的完美序列的存在。本文的目的是证明Q(8)布尔OR qQ(8)上长度为n的完美序列与q =(1 + i + j + k)/ 2和(4n,2)的1-1对应关系,Cn x Q(8)中具有C-2个子组的相对差异集;这里C-m是阶为m的循环群。我们表明如果n = p(a)+ 1对于素数p和整数a> = 0,n = 2 mod 4,则Cn x Q中存在一个(4n,2,2,4n,2n)相对不同的集合。 (8)具有禁止的C-2亚组。最后,我们证明在Q(8)布尔OR q Q(8)上长度为n的每个完美序列都会产生4n阶的Hadamard矩阵(以及在Q(8)布尔OR qQ(8)上为n阶的四元Hadamard矩阵) )。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号