首页> 外文期刊>Cryptography and Communications >Boolean functions with multiplicative complexity 3 and 4
【24h】

Boolean functions with multiplicative complexity 3 and 4

机译:布尔函数具有乘法复杂性3和4

获取原文
获取原文并翻译 | 示例

摘要

Multiplicative complexity (MC) is defined as the minimum number of AND gates required to implement a function with a circuit over the basis (AND, XOR, NOT). Boolean functions with MC 1 and 2 have been characterized in Fisher and Peralta (2002), and Find et al. (IJICoT4(4), 222-236,2017), respectively. In this work, we identify the affine equivalence classes for functions with MC 3 and 4. In order to achieve this, we utilize the notion of the dimensiondim(f) of a Boolean function in relation to its linearity dimension, and provide a new lower bound suggesting that the multiplicative complexity offis at least left ceiling dim(f)/2 right ceiling . For MC 3, this implies that there are no equivalence classes other than those 24 identified in calik et al. (2018). Using the techniques from calik et al. and the new relation between the dimension and MC, we identify all 1277 equivalence classes having MC 4. We also provide a closed formula for the number ofn-variable functions with MC 3 and 4. These results allow us to construct AND-optimal circuits for Boolean functions that have MC 4 or less, independent of the number of variables they are defined on.
机译:乘法复杂性(MC)被定义为在基础上使用电路(以及XOR,而不是)实现功能所需的最小数量和栅极。带有MC 1和2的布尔函数已在Fisher和Peralta(2002)中,并找到等等。 (IJICOT4(4),222-236,2017)分别。在这项工作中,我们确定了使用MC 3和4的函数的仿射等效类。为了实现这一目标,我们利用了与其线性尺寸相关的布尔函数的DimensionDim(F)的概念,并提供了新的下部暗示表明,乘法复杂性至少留下留下天花板暗淡(f)/ 2右天花板。对于MC 3,这意味着除了Calik等人中识别的那些24之外的等效类别。 (2018)。使用Calik等人的技术。和维度和MC之间的新关系,我们识别具有MC 4的所有1277等效类。我们还为MC 3和4提供了用于MC 3和4的N个变量功能的关闭公式。这些结果允许我们构建和最佳电路拥有MC 4或更低的布尔函数,独立于它们定义的变量数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号