首页> 外文期刊>Cryptography and Communications >The multiplicative complexity of 6-variable Boolean functions
【24h】

The multiplicative complexity of 6-variable Boolean functions

机译:6变量布尔函数的乘法复杂度

获取原文
获取原文并翻译 | 示例

摘要

The multiplicative complexity of a Boolean function is the minimum number of two-input AND gates that are necessary and sufficient to implement the function over the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is computationally intractable, even for functions with small number of inputs. Turan et al. [1] showed that n-variable Boolean functions can be implemented with at most n-1 AND gates for n5. A counting argument can be used to show that, for n 7, there exist n-variable Boolean functions with multiplicative complexity of at least n. In this work, we propose a method to find the multiplicative complexity of Boolean functions by analyzing circuits with a particular number of AND gates and utilizing the affine equivalence of functions. We use this method to study the multiplicative complexity of 6-variable Boolean functions, and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We show that any 6-variable Boolean function can be implemented using at most 6 AND gates. Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative complexity 6.
机译:布尔函数的乘法复杂度是在基础上实现该功能(AND,XOR,NOT)所必需且足够的最小两个输入与门。即使对于输入数量较少的函数,找到给定函数的乘法复杂度在计算上也是困难的。 Turan等。文献[1]表明,对于n5,最多可以使用n-1个AND门来实现n变量布尔函数。可以使用一个计数参数来表明,对于n 7,存在n个变量的布尔函数,其乘法复杂度至少为n。在这项工作中,我们提出了一种通过分析具有特定数量AND门的电路并利用函数的仿射等效性来找到布尔函数的乘法复杂度的方法。我们使用这种方法研究6变量布尔函数的乘法复杂度,并计算所有150357个仿射等价类的乘法复杂度。我们表明,最多可以使用6个AND门来实现任何6变量布尔函数。此外,我们展示了具有乘法复杂度6的特定6变量布尔函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号