首页> 外文期刊>Control Theory & Applications, IET >Synchronisation of chaotic neural networks with unknown parameters and random time-varying delays based on adaptive sampled-data control and parameter identification
【24h】

Synchronisation of chaotic neural networks with unknown parameters and random time-varying delays based on adaptive sampled-data control and parameter identification

机译:基于自适应采样数据控制和参数辨识的未知参数和时变随机时延混沌神经网络的同步

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the synchronisation problem of chaotic neural networks with unknown parameters and random time-varying delays. By introducing a stochastic variable with Bernoulli distribution, the neural networks with random time-varying delays is transformed into one with deterministic varying delays and stochastic parameters. A simple and robust adaptive sampled-data controller is designed such that the response system can be synchronised with a drive system with unknown parameters by using suitable parameter identification and the Lyapunov stability theory. The proposed synchronisation criteria are easily verified and do not need to solve any linear matrix inequality. Numerical simulations are carried out to demonstrate the effectiveness of the established synchronisation laws.
机译:本研究研究了参数未知,时变随机时延的混沌神经网络的同步问题。通过引入具有伯努利分布的随机变量,将具有随机时变延迟的神经网络转换为具有确定性变化的延迟和随机参数的神经网络。设计了一种简单而强大的自适应采样数据控制器,从而可以通过使用适当的参数识别和Lyapunov稳定性理论将响应系统与参数未知的驱动系统同步。所提出的同步标准易于验证,不需要解决任何线性矩阵不等式。进行了数值模拟,以证明建立的同步律的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号