首页> 外文期刊>Control Theory & Applications, IET >Model predictive control allocation for stability improvement of four-wheel drive electric vehicles in critical driving condition
【24h】

Model predictive control allocation for stability improvement of four-wheel drive electric vehicles in critical driving condition

机译:模型预测控制分配,用于提高关键驾驶条件下四轮驱动电动汽车的稳定性

获取原文
获取原文并翻译 | 示例

摘要

To improve the vehicle stability of an electric vehicle (EV) with four in-wheel motors, the authors investigate the use of a non-linear control allocation scheme based on model predictive control (MPC) for EVs. Such a strategy is useful in yaw stabilisation of the vehicle. The proposed allocation strategy allows a modularisation of the control task, such that an upper level control system specifies a desired yaw moment to work on the EVs, while the control allocation is used to determine control inputs for four driving motors by commanding appropriate wheel slips. To avoid unintended side effects, skidding or discomforting the driver in critical driving condition, the MPC method, which permits us to consider constraints of actuating motors and slip ratio, is proposed to deal with this challenging problem. An analytical approach for the proposed controller is given and applied to evaluate the handing and stability of EVs. The experimental results show that the designed MPC allocation algorithm for motor torque has better performance in real time, and the control performance can be guaranteed in the real-time environment.
机译:为了提高带有四个轮毂电机的电动汽车(EV)的车辆稳定性,作者研究了基于模型预测控制(MPC)的电动汽车非线性控制分配方案的使用。这样的策略在车辆的偏航稳定中是有用的。所提出的分配策略允许控制任务的模块化,使得上级控制系统指定在电动汽车上工作的期望偏航力矩,而控制分配用于通过命令适当的车轮打滑来确定四个驱动马达的控制输入。为了避免意外的副作用,在关键驾驶条件下打滑或使驾驶员感到不适,建议使用MPC方法来解决这一具有挑战性的问题,该方法允许我们考虑驱动电动机和滑移率的约束。给出了所提出控制器的一种分析方法,并将其应用于评估电动汽车的操纵性和稳定性。实验结果表明,所设计的电动机转矩MPC分配算法具有较好的实时性能,在实时环境下可以保证控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号