首页> 外文期刊>Control Theory & Applications, IET >Real-time state estimator without noise covariance matrices knowledge – fast minimum norm filtering algorithm
【24h】

Real-time state estimator without noise covariance matrices knowledge – fast minimum norm filtering algorithm

机译:无需噪声协方差矩阵知识的实时状态估计器-快速最小范数滤波算法

获取原文
获取原文并翻译 | 示例

摘要

The digital filtering technology has been widely applied in a majority of signal processing applications. For the linear systems with state-space model, Kalman filter provides optimal state estimates in the sense of minimum-mean-squared errors and maximum-likelihood estimation. However, only with accurate system parameters and noise statistical properties, the estimation obtained by standard Kalman filter is the optimal state estimate. Most of time, the exact noise statistical properties could not be obtained as a priori information or even wrong statistical properties may be captured by the offline method. This may lead to a poor performance (even divergence) of Kalman filtering algorithm. In this study, a novel real-time filter, named as fast minimum norm filtering algorithm, has been proposed to deal with the case when the covariance matrices of the process and measurement noises were unknown in the linear time-invariant systems with state-space model. Tests have been performed on numerical examples to illustrate that the fast minimum norm filtering algorithm could be used to obtain acceptable precision state estimation in comparison with the standard Kalman filter for the discrete-time linear time-invariant systems.
机译:数字滤波技术已广泛应用于大多数信号处理应用中。对于具有状态空间模型的线性系统,卡尔曼滤波器在最小均方误差和最大似然估计的意义上提供了最佳状态估计。但是,只有具有准确的系统参数和噪声统计特性,通过标准卡尔曼滤波器获得的估计才是最佳状态估计。大多数时候,无法获得确切的噪声统计特性作为先验信息,或者甚至可能通过脱机方法捕获错误的统计特性。这可能导致卡尔曼滤波算法的性能较差(甚至发散)。在这项研究中,提出了一种新颖的实时滤波器,称为快速最小范数滤波算法,用于处理状态空间线性时不变系统中过程和测量噪声的协方差矩阵未知的情况模型。已经对数值示例进行了测试,以说明与离散时间线性时不变系统的标准卡尔曼滤波器相比,快速最小范数滤波算法可用于获得可接受的精度状态估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号