首页> 外文期刊>Control Theory & Applications, IET >Multi-agent model-based predictive control for large-scale urban traffic networks using a serial scheme
【24h】

Multi-agent model-based predictive control for large-scale urban traffic networks using a serial scheme

机译:基于串行方案的基于多智能体模型的大规模城市交通网络预测控制

获取原文
获取原文并翻译 | 示例

摘要

Urban traffic networks are large-scale systems, consisting of many intersections controlled by traffic lights and interacting connected links. For efficiently regulating the traffic flows and mitigating the traffic congestion in cities, a network-wide control strategy should be implemented. Control of large-scale traffic networks is often infeasible by only using a single controller, that is, in a centralised way, because of the high dimension, complicated dynamics and uncertainties of the system. In this study, the authors propose a multi-agent control approach using a congestion-degree-based serial scheme. Each agent employs a model-based predictive control approach and communicates with its neighbours. The congestion-degree-based serial scheme helps the agents to reach an agreement on their decisions regarding traffic control actions as soon as possible. A simulation study is carried out on a hypothetical large-scale urban traffic network based on the presented control strategy. The results illustrate that this approach has a better performance with regard to computation time compared with the centralised control method and a faster convergence speed compared with the classical parallel scheme.
机译:城市交通网络是大型系统,由许多由交通信号灯控制的交叉路口和相互作用的连接链路组成。为了有效地调节交通流量并减轻城市的交通拥堵,应该实施全网控制策略。由于系统的高尺寸,复杂的动力学和不确定性,仅通过使用单个控制器(即以集中方式)来控制大型交通网络通常是不可行的。在这项研究中,作者提出了一种使用基于拥塞度的串行方案的多主体控制方法。每个代理都采用基于模型的预测控制方法,并与其邻居进行通信。基于拥塞程度的串行方案可帮助代理尽快就其有关流量控制操作的决策达成协议。基于提出的控制策略,在假设的大型城市交通网络上进行了仿真研究。结果表明,与集中控制方法相比,该方法在计算时间上具有更好的性能,与经典并行方案相比,具有更快的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号