首页> 外文期刊>Control Theory & Applications, IET >Improved discrete-time Kalman filtering within singular value decomposition
【24h】

Improved discrete-time Kalman filtering within singular value decomposition

机译:奇异值分解中的改进离散时间卡尔曼滤波

获取原文
获取原文并翻译 | 示例

摘要

This study presents a new Kalman filter (KF) implementation useful in applications where the accuracy of numerical solution of the associated Riccati equation might be crucially reduced by influence of roundoff errors. Since the appearance of the KF in 1960s, it has been recognised that the factored form of the KF is preferable for practical implementation. The most popular and beneficial techniques are found in the class of square-root algorithms based on the Cholesky decomposition of error covariance matrix. Another important matrix factorisation method is the singular value decomposition (SVD) and, hence, further encouraging implementations might be found under this approach. The analysis presented here exposes that the previously proposed SVD-based KF variant is still sensitive to roundoff errors and poorly treats ill-conditioned situations, although the SVD-based strategy is inherently more stable than the conventional KF approach. In this study, the authors design a new SVD-based KF implementation for enhancing the robustness against roundoff errors, provide its detailed derivation, and discuss the numerical stability issues. A set of numerical experiments are performed for comparative study. The obtained results illustrate that the new SVD-based method is algebraically equivalent to the conventional KF and to the previously proposed SVD-based method, but it outperforms the mentioned techniques for estimation accuracy in ill-conditioned situations.
机译:这项研究提出了一种新的卡尔曼滤波器(KF)实施方案,该方案可用于可能由于舍入误差的影响而严重降低相关Riccati方程数值解精度的应用中。自从1960年代KF出现以来,就已经认识到KF的分解形式对于实际实施是更可取的。在基于误差协方差矩阵的Cholesky分解的平方根算法类别中找到了最流行和有益的技术。另一个重要的矩阵分解方法是奇异值分解(SVD),因此,在这种方法下可能会发现更令人鼓舞的实现方式。尽管基于SVD的策略在本质上比传统的KF方法更稳定,但此处提出的分析表明,先前提出的基于SVD的KF变体仍然对舍入错误敏感,并且对病态情况的处理不佳。在这项研究中,作者设计了一种新的基于SVD的KF实现,以增强针对舍入误差的鲁棒性,提供其详细推导,并讨论数值稳定性问题。进行了一组数值实验以进行比较研究。获得的结果说明,新的基于SVD的方法在代数上等同于常规KF和先前提出的基于SVD的方法,但是在病态情况下,其性能优于上述技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号