首页> 外文期刊>Control Theory & Applications, IET >Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise
【24h】

Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

机译:色噪声指数自回归时间序列模型的基于递归搜索的识别算法

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms.
机译:这项研究集中在带有移动平均噪声的非线性指数自回归模型(简称ExpARMA模型)的递归参数估计问题上。通过梯度搜索,推导了扩展的随机梯度(ESG)算法。考虑到在ESG算法中确定步长的困难,提出了一种数值方法来获得最优步长。为了提高参数估计的准确性,作者采用了多创新识别理论为ExpARMA模型开发了多创新ESG(MI-ESG)算法。将遗忘因素引入MI-ESG算法中,可以进一步提高参数估计的准确性。通过适当的创新长度和遗忘因子,MI-ESG算法的变体可以有效地识别ExpARMA模型的所有未知参数。提供了一个仿真示例来测试所提出的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号