首页> 外文期刊>Control Theory & Applications, IET >Applying unweighted least-squares based techniques to stochastic dynamic programming: theory and application
【24h】

Applying unweighted least-squares based techniques to stochastic dynamic programming: theory and application

机译:将基于非加权最小二乘的技术应用于随机动态规划:理论与应用

获取原文
获取原文并翻译 | 示例

摘要

Big data and the curse of dimensionality are common vocabularies that researchers in different communities have recently been dealing with, e.g. dynamic programming (DP) in automatic control system society. A novel unweighted sampled based least square projection approach is proposed in this study to address the issue of the large state space in the DP optimisation problem. The method, in particular, takes into account both contraction mapping and monotonicity properties of the DP algorithm for value function approximation. Specifically, the batch of samples are gathered by uniform probability distribution at first, and an unweighted LS sub-problem in the subspace is solved. As the case study, a new Markov decision process model associated with a resource allocation problem is considered to illustrate the technique and evaluate its effectiveness. It is noted that the approach can be employed for different applications as well. Moreover, a MATLAB based software is developed to implement and examine different parts of the proposed method. Simulation examples are considered to support the results of the approach via developed software. The idea makes a connection between the recent advances in big data analysis and approximate DP as well.
机译:大数据和维度诅咒是不同社区的研究人员最近正在处理的常用词汇,例如自动控制系统社会中的动态编程(DP)。在这项研究中提出了一种新颖的基于非加权采样的最小二乘投影方法,以解决DP优化问题中的大状态空间问题。该方法特别考虑了DP压缩算法的压缩映射和单调性,以进行值函数逼近。具体地,首先通过均匀的概率分布来收集一批样本,并且解决子空间中的未加权LS子问题。作为案例研究,考虑了与资源分配问题相关的新的马尔可夫决策过程模型来说明该技术并评估其有效性。注意,该方法也可以用于不同的应用。此外,开发了一个基于MATLAB的软件来实现和检查所提出方法的不同部分。仿真示例被认为可以通过开发的软件来支持该方法的结果。这个想法将大数据分析的最新进展与近似DP结合起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号