首页> 外文期刊>Control Theory & Applications, IET >Resilient adaptive optimal control of distributed multi-agent systems using reinforcement learning
【24h】

Resilient adaptive optimal control of distributed multi-agent systems using reinforcement learning

机译:基于强化学习的分布式多主体系统弹性自适应最优控制

获取原文
获取原文并翻译 | 示例

摘要

This study presents a unified resilient model-free reinforcement learning (RL) based distributed control protocol for leader-follower multi-agent systems. Although RL has been successfully used to learn optimal control protocols for multi-agent systems, the effects of adversarial inputs are ignored. It is shown in this study, however, that their adverse effects can propagate across the network and impact the learning outcome of other intact agents. To alleviate this problem, a unified RL-based distributed control frameworks is developed for both homogeneous and heterogeneous multi-agent systems to prevent corrupted sensory data from propagating across the network. To this end, only the leader communicates its actual sensory information and other agents estimate the leader' state using a distributed observer and communicate this estimation to their neighbours to achieve consensus on the leader state. The observer cannot be physically affected by any adversarial input. To further improve resiliency, distributed Hcontrol protocols are designed to attenuate the effect of the adversarial inputs on the compromised agent itself. An off-policy RL algorithm is developed to learn the solutions of the game algebraic Riccati equations arising from solving the Hcontrol problem. No knowledge of the agent's dynamics is required and it is shown that the proposed RL-based Hcontrol protocol is resilient against adversarial inputs.
机译:这项研究提出了一种针对领导者跟从多主体系统的,基于统一的无弹性无模型强化学习(RL)的分布式控制协议。尽管RL已经成功地用于学习多智能体系统的最佳控制协议,但对抗性输入的影响却被忽略了。然而,这项研究表明,它们的不利影响可以在网络中传播,并影响其他完整主体的学习结果。为了缓解此问题,针对同构和异构多代理系统开发了基于RL的统一分布式控制框架,以防止损坏的感官数据在网络中传播。为此,只有领导者传达其实际的感官信息,而其他主体使用分布式观察者估计领导者的状态,并将此估计值传达给他们的邻居,以达成对领导者状态的共识。观察者不会受到任何对抗性输入的物理影响。为了进一步提高弹性,分布式H n n控制协议,以减弱对抗性输入对受害主体本身的影响。开发了一种非政策性RL算法,以学习求解H n n控制问题。不需要了解代理的动态,并且表明所建议的基于RL的H n n控制协议可抵抗对抗性输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号