首页> 外文期刊>Neurocomputing >Internal reinforcement adaptive dynamic programming for optimal containment control of unknown continuous-time multi-agent systems
【24h】

Internal reinforcement adaptive dynamic programming for optimal containment control of unknown continuous-time multi-agent systems

机译:内部强化自适应动态规划,用于未知连续时间多剂量系统的最佳遏制控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel control scheme is developed to solve an optimal containment control problem of unknown continuous-time multi-agent systems. Different from traditional adaptive dynamic programming (ADP) algorithms, this paper proposes an internal reinforcement ADP algorithm (IR-ADP), in which the internal reinforcement signals are added in order to facilitate the learning process. Then a distributed containment control law is designed for each agent with the internal reinforcement signal. The convergence of this IR-ADP algorithm and the stability of the closed-loop multi-agent system are analyzed theoretically. For the implementation of the optimal controllers, three neural networks (NNs), namely internal reinforcement NNs, critic NNs and actor NNs, are utilized to approximate the internal reinforcement signals, the performance indices and optimal control laws, respectively. Finally, some simulation results are provided to demonstrate the effectiveness of the proposed algorithm. (C) 2020 Elsevier B.V. All rights reserved.
机译:在本文中,开发了一种新的控制方案来解决未知连续时间多代理系统的最佳遏制控制问题。与传统的自适应动态编程(ADP)算法不同,本文提出了一种内部增强ADP算法(IR-ADP),其中添加内部加强信号以便于学习过程。然后,分布式容纳控制法为具有内部增强信号的每个试剂设计。理论上分析了该IR-ADP算法的收敛性和闭环多助理系统的稳定性。为了实现最佳控制器,利用三个神经网络(NNS),即内部加强NN,评论力NN和ACTOR NNS,分别近似于内部增强信号,性能指标和最佳控制规律。最后,提供了一些模拟结果来证明所提出的算法的有效性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号