首页> 外文期刊>IEEE Transactions on Control Systems Technology >An Iterative Learning Design for Repeatable Runout Cancellation in Disk Drives
【24h】

An Iterative Learning Design for Repeatable Runout Cancellation in Disk Drives

机译:磁盘驱动器中重复跳动取消的迭代学习设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the iterative learning control (ILC) framework to design a reference signal that directly cancels periodic disturbances in a feedback measurement. Cancellation of periodic disturbances is useful in reducing undesirable re-peatable tracking errors in applications such as the two-stage servo track writing process for disk drives. A general problem description is given for a linear discrete-time periodic system and convergence results for the learning system are derived. A learning filter is designed with the use of a finite-impulse response model approximation for the inverse of the closed-loop sensitivity such that convergence is achieved in learning a reference signal that provides cancellation with periodic perturbations affecting the system measurement. The ILC algorithm is applied to a disk drive system where experimental results demonstrate the effectiveness of the method in reducing periodic measurement disturbances.
机译:在本文中,我们考虑了迭代学习控制(ILC)框架来设计参考信号,该参考信号可直接消除反馈测量中的周期性干扰。在诸如磁盘驱动器的两阶段伺服磁道写入过程之类的应用中,消除周期性干扰有助于减少不希望出现的可重复出现的跟踪错误。给出了线性离散时间周期系统的一般问题描述,并得出了学习系统的收敛结果。对于闭环灵敏度的倒数,使用​​有限脉冲响应模型近似来设计学习滤波器,以便在学习参考信号时实现收敛,该参考信号会提供抵消影响系统测量的周期性扰动。 ILC算法应用于磁盘驱动器系统,实验结果证明了该方法在减少周期性测量干扰方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号