首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Fault Detection and Isolation of Induction Motors Using Recurrent Neural Networks and Dynamic Bayesian Modeling
【24h】

Fault Detection and Isolation of Induction Motors Using Recurrent Neural Networks and Dynamic Bayesian Modeling

机译:基于递归神经网络和动态贝叶斯建模的感应电动机故障检测与隔离

获取原文
获取原文并翻译 | 示例

摘要

Dynamic neural models provide an attractive means of fault detection and isolation in industrial process. One approach is to create a neural model to emulate normal system behavior and additional models to emulate various fault conditions. The neural models are then placed in parallel with the system to be monitored, and fault detection is achieved by comparing the outputs of the neural models with the real system outputs. Neural network training is achieved using simultaneous perturbation stochastic approximation (SPSA). Fault classification is based on a simple threshold test of the residuals formed by subtracting each neural model output from the corresponding output of the real system. We present a new approach based on this well known scheme where a Bayesian network is used to evaluate the residuals. The approach is applied to fault detection in a three-phase induction motor.
机译:动态神经模型为工业过程中的故障检测和隔离提供了一种有吸引力的手段。一种方法是创建一个神经模型来模拟正常系统行为,并创建其他模型来模拟各种故障情况。然后将神经模型与要监视的系统并行放置,并通过将神经模型的输出与实际系统输出进行比较来实现故障检测。使用同时扰动随机逼近(SPSA)来实现神经网络训练。故障分类基于残差的简单阈值测试,该残差是通过从实际系统的相应输出中减去每个神经模型输出而形成的。我们基于这种众所周知的方案提出了一种新方法,其中贝叶斯网络用于评估残差。该方法适用于三相感应电动机的故障检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号