首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Aerodynamic Shape Optimization via Global Extremum Seeking
【24h】

Aerodynamic Shape Optimization via Global Extremum Seeking

机译:通过全局极值搜索优化空气动力学形状

获取原文
获取原文并翻译 | 示例

摘要

Optimization of aerodynamic shapes using computational fluid dynamics (CFD) approaches has been successfully demonstrated over a number of years; however, the typical optimization approaches employed utilize gradient algorithms that guarantee only the local optimality of the solution. While numerous global optimization techniques exist, they are usually too time consuming in practice. In this brief, a modified global optimization algorithm (DIRECT-L) is introduced and is utilized in the context of sampled-data global extremum seeking. The theoretical framework and conditions under which the convergence to the steady state of the CFD solver can be interpreted as plant dynamics are stated. This method alleviates the computational burden by reducing sampling and requiring only partial convergence of the CFD solver for each iteration of the optimization design process. The approach is demonstrated on a simple example involving drag minimization on a 2-D aerofoil.
机译:多年来,已经成功地证明了使用计算流体动力学(CFD)方法对空气动力学形状的优化。但是,采用的典型优化方法利用的梯度算法只能保证解决方案的局部最优性。尽管存在许多全局优化技术,但它们在实践中通常太耗时。在本简介中,介绍了一种改进的全局优化算法(DIRECT-L),并将其用于采样数据全局极值搜索的上下文中。阐述了可以将CFD求解器的稳态收敛解释为工厂动力学的理论框架和条件。此方法通过减少采样并针对优化设计过程的每次迭代仅需要CFD求解器的部分收敛来减轻计算负担。在涉及二维翼型阻力最小化的简单示例中演示了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号