首页> 外文期刊>Control Systems Technology, IEEE Transactions on >A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control With Road Grade Preview
【24h】

A Parallel Hybrid Electric Vehicle Energy Management Strategy Using Stochastic Model Predictive Control With Road Grade Preview

机译:基于道路坡度预测的随机模型预测控制的混合动力电动汽车并行能源管理策略

获取原文
获取原文并翻译 | 示例

摘要

The energy efficiency of parallel hybrid electric vehicles (HEVs) can degrade significantly when the battery state-of-charge (SoC) reaches its boundaries. The road grade has a great influence on the HEV battery charging and discharging processes, and therefore the HEV energy management can be benefited from the road grade preview. In real-world driving, the road grade ahead can be considered as a random variable because the future route is not always available to the HEV controller. This brief proposes a stochastic model predictive control-based energy management strategy using the vehicle location, traveling direction, and terrain information of the area for HEVs running in hilly regions with light traffic. The strategy does not require a determined route being known in advance. The road grade is modeled as a Markov chain and stochastic HEV fuel consumption and battery SoC models are developed. The HEV energy management problem is formulated as a finite-horizon Markov decision process and solved using stochastic dynamic programming. The proposed method is evaluated in simulation and compared with an equivalent consumption minimization strategy and the dynamic programming results. It is shown that the developed method can help maintaining the battery SoC within its boundaries and achieve good energy consumption performance.
机译:当电池充电状态(SoC)达到其极限时,并联混合动力电动汽车(HEV)的能源效率会大大降低。道路坡度对HEV电池的充电和放电过程影响很大,因此可以从道路坡度预览中受益于HEV能源管理。在实际驾驶中,可以将前方的道路坡度视为随机变量,因为HEV控制器并不总是可以使用将来的路线。本摘要提出了一种基于随机模型预测控制的能源管理策略,该策略使用车辆位置,行进方向和该地区的地形信息,为在交通繁忙的丘陵地区行驶的混合动力汽车提供能量。该策略不需要预先知道确定的路线。道路等级以马尔可夫链为模型,并开发了随机混合动力汽车的油耗和电池SoC模型。混合动力汽车能源管理问题被表述为有限水平的马尔可夫决策过程,并使用随机动态规划解决。该方法在仿真中进行了评估,并与等效功耗最小化策略和动态规划结果进行了比较。结果表明,所开发的方法可以帮助将电池SoC保持在其边界内并实现良好的能耗性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号