首页> 外文期刊>IEEE Transactions on Control Systems Technology >Robust Model Predictive Control for Train Regulation in Underground Railway Transportation
【24h】

Robust Model Predictive Control for Train Regulation in Underground Railway Transportation

机译:地下铁路运输中列车调度的鲁棒模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

This brief investigates the robust model predictive control (MPC) for train regulation in underground railway transportation. By considering the uncertain passenger arrival flow, a constrained state-space model for the train traffic of a metro loop line is developed. The goal of this brief is to design a state feedback control law at each decision step to optimize a metro system cost function subject to safety constraints on the control input. Based on Lyapunov function theory, the problem of optimizing an upper bound on the system cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities. Moreover, for the inevitable disturbances leading to the delays, the robust MPC strategy of train regulation is designed for a metro loop line such that it ensures the minimization of an upper bound on metro system cost function, and meanwhile guarantees a disturbance attenuation level with respect to the disturbances. Numerical examples are given to illustrate the effectiveness of the proposed methods.
机译:本文简要研究了用于地下铁路运输中列车调节的鲁棒模型预测控制(MPC)。通过考虑不确定的旅客到达流量,建立了地铁环线列车交通约束状态空间模型。本摘要的目的是在每个决策步骤中设计一个状态反馈控制律,以在控制输入受到安全约束的情况下优化地铁系统的成本函数。基于李雅普诺夫函数理论,将受输入约束的系统成本函数的上限优化的问题简化为涉及线性矩阵不等式的凸优化问题。此外,为避免不可避免的干扰导致延误,针对地铁环线设计了鲁棒的MPC列车调节策略,以确保最小化地铁系统成本函数的上限,同时确保相对于干扰的衰减水平对骚动。数值例子说明了所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号