首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Information-Driven Adaptive Sampling Strategy for Mobile Robotic Wireless Sensor Network
【24h】

Information-Driven Adaptive Sampling Strategy for Mobile Robotic Wireless Sensor Network

机译:移动机器人无线传感器网络的信息驱动自适应采样策略

获取原文
获取原文并翻译 | 示例

摘要

This brief addresses the issue of monitoring physical spatial phenomena of interest using information collected by a resource-constrained network of mobile, wireless, and noisy sensors that can take discrete measurements as they navigate through the environment. We first propose an efficient novel optimality criterion for designing a sampling strategy to find the most informative locations in taking future observations to minimize the uncertainty at all unobserved locations of interest. This solution is proven to be within bounds. The computational complexity of this proposition is shown to be practically feasible. We then prove that under a certain condition of monotonicity property, the approximate entropy at resulting locations obtained by our proposed algorithm is within of the optimum, which is then utilized as a stopping criterion for the sampling algorithm. The criterion enables the prediction results to be within user-defined accuracies by controlling the number of mobile sensors. The effectiveness of the proposed method is illustrated using a prepublished data set.
机译:本简介解决了使用资源受限的移动,无线和噪声传感器网络收集的信息来监视感兴趣的物理空间现象的问题,这些传感器可以在环境中导航时进行离散测量。我们首先提出一种有效的新颖最优准则,用于设计采样策略,以在进行未来观察时找到信息量最大的位置,以最大程度地减少所有未观察到的感兴趣位置的不确定性。事实证明该解决方案是可行的。该命题的计算复杂度被证明是切实可行的。然后我们证明,在一定的单调性条件下,通过我们的算法获得的结果位置处的近似熵在最优范围内,然后被用作采样算法的停止准则。该标准通过控制移动传感器的数量,使预测结果在用户定义的精度范围内。使用预先发布的数据集说明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号