首页> 外文期刊>IEEE Transactions on Control Systems Technology >A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation
【24h】

A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation

机译:逐步变化过程中自适应卡尔曼滤波的预测误差协方差估计器:在电力系统状态估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.
机译:在本文中,我们提出了一种估计卡尔曼滤波器(KF)的预测误差协方差的新方法,该方法适用于逐步变化的过程。该方法使用了一系列过去的创新(即即将到来的测量集和KF预测状态之间的差异)来通过约束凸优化问题来估计预测误差协方差矩阵。后者旨在确保估计的协方差矩阵的对称性和正半定性,从而确保KF数值稳定性。我们提出的方法易于实现,并且只需要设置一个参数即可,即要考虑的过去创新数量。它依赖于线性和静态测量模型的知识。在理想条件下针对随机游走过程模型和电力系统状态估计的情况下,验证了该方法跟踪状态阶跃变化的能力。还将所提出的方法与其他估计KF随机参数的方法以及众所周知的线性加权最小二乘法进行比较。根据准确性和计算时间进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号