首页> 外文期刊>Control Systems Technology, IEEE Transactions on >Model Predictive Charging Control of In-Vehicle Batteries for Home Energy Management Based on Vehicle State Prediction
【24h】

Model Predictive Charging Control of In-Vehicle Batteries for Home Energy Management Based on Vehicle State Prediction

机译:基于车辆状态预测的用于家庭能源管理的车载电池模型预测充电控制

获取原文
获取原文并翻译 | 示例

摘要

Thanks to recent development of reciprocal communication networks and electric power management infrastructure, an energy management system, which can automatically regulate supply-demand imbalances under conditions of the users' convenience and economy, is attracting great attention. On the other hand, finding of new usage of the batteries employed in electric vehicles and plug-in hybrid vehicles is recognized as one of key issues to realize the sustainable society. In addition, development of vehicle to X technology enables us to use the electric power of in-vehicle batteries for various purposes. Based on these backgrounds, this paper presents an integrated strategy for charging control of in-vehicle batteries that optimizes the charge/discharge of in-vehicle batteries in a receding horizon manner exploiting the predicted information on home power load and future vehicle state in the household. The prediction algorithm of future vehicle state is developed based on semi-Markov model and dynamic programming. In addition, it can also be implemented in receding horizon manner, i.e., the predicted vehicle state is updated at every control cycle based on the new observation. Thus, the harmonious combination of stochastic modeling/prediction and MPC in real-time home energy management system is one of the main contributions of this paper. Effectiveness of the proposed charging control is demonstrated by using an experimental testbed.
机译:得益于对等通信网络和电力管理基础设施的最新发展,一种能在用户方便和经济的条件下自动调节供需不平衡的能源管理系统引起了广泛的关注。另一方面,发现电动汽车和插电式混合动力汽车中使用的电池的新用途被认为是实现可持续社会的关键问题之一。另外,车辆向X技术的发展使我们能够将车载电池的电力用于各种目的。基于这些背景,本文提出了一种用于车载电池充电控制的集成策略,该策略以后退的方式优化车载电池的充电/放电,并利用有关家庭电力负荷和家庭未来车辆状态的预测信息。基于半马尔可夫模型和动态规划,开发了未来车辆状态预测算法。另外,它也可以以后退的水平方式实现,即,基于新的观察在每个控制周期更新预测的车辆状态。因此,随机建模/预测与MPC在实时家庭能源管理系统中的和谐结合是本文的主要贡献之一。建议的充电控制的有效性通过使用一个实验测试台来证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号