首页> 外文期刊>IEEE Transactions on Control Systems Technology >Inversion-Free Hysteresis Compensation via Adaptive Conditional Servomechanism With Application to Nanopositioning Control
【24h】

Inversion-Free Hysteresis Compensation via Adaptive Conditional Servomechanism With Application to Nanopositioning Control

机译:通过适应性条件伺服机构应用于纳米定位控制的无逆转滞后补偿

获取原文
获取原文并翻译 | 示例

摘要

In this article, an adaptive conditional servocompensator is proposed to achieve precise tracking control of systems with hysteresis without requiring explicit inversion of the hysteresis. Motivated by a range of applications, such as the piezoelectric-actuated nanopositioning, the system considered in this work consists of a chain of integrators preceded by a hysteresis nonlinearity modeled by a modified Prandtl-Ishlinskii (MPI) operator with uncertainty. To facilitate the proposed control design, the MPI operator is rearranged into a form comprised of three parts: a linear term, a nominal hysteretic term represented by a classical Prandtl-Ishlinskii (PI) operator, and a hysteretic perturbation. The bound on the hysteretic perturbation is further derived based on the parameter uncertainty of the MPI operator. The controller consists of two major elements. The first is a continuously implemented sliding mode controller (SMC), which exploits the bound on hysteretic perturbation and drives the system states to a bounded set in finite time. To properly "cancel" the nominal hysteresis effect without inversion, a technique involving a low-pass filter is introduced. The second element of the proposed controller is an adaptive conditional servocompensator that aims to eliminate periodic components in the tracking error. We show that, with persistent excitation, the closed-loop variables are ultimately bounded and the tracking error approaches a neighborhood of zero, where the neighborhood can be made arbitrarily small via the choice of the SMC boundary-layer width parameter and the servocompensator order. The proposed approach is implemented experimentally on a commercial nanopositioner under different types of periodic references, and it shows superior tracking performance over the traditional proportional-integral control, as well as several hysteresis inversion-based approaches reported in the literature.
机译:在本文中,提出了一种自适应条件伺服组分,以实现具有滞后的系统的精确跟踪控制,而不需要明确的滞后反演。通过一系列应用,例如压电致动的纳米定位,在该工作中考虑的系统包括一系列集成器,其前面由由修改的Prandtl-Ishlinskii(MPI)操作员为具有不确定性的修改的Prandtl-Ishlinskii(MPI)操作员之前的滞后非线性。为了促进所提出的控制设计,将MPI操作员重新排列成由三个部分组成的形式:线性术语,由经典Prandtl-Ishlinskii(PI)操作员表示的标称滞后项,以及滞后扰动。基于MPI运算符的参数不确定性进一步导出滞后扰动的绑定。控制器由两个主要元素组成。首先是连续实现的滑动模式控制器(SMC),其利用滞后扰动的绑定,并将系统状态驱动到有限时间内的有限集合。为了正确地“取消”义务滞后效果而无需反转,介绍了一种涉及低通滤波器的技术。所提出的控制器的第二个元素是自适应条件伺服组分,其旨在消除跟踪误差中的周期性分量。我们表明,通过持久激励,闭环变量最终有界,并且跟踪误差接近零的邻域,其中通过选择SMC边界层宽度参数和伺服组分顺序可以任意地进行邻域。所提出的方法在不同类型的周期性参考文献下通过实验在商业纳米定位器上实施,并且它在传统的比例积分控制中显示出优异的跟踪性能,以及文献中报道了几种基于滞后反演的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号