首页> 外文期刊>IEEE Transactions on Control Systems Technology >Online Fault Diagnosis in Industrial Processes Using Multimodel Exponential Discriminant Analysis Algorithm
【24h】

Online Fault Diagnosis in Industrial Processes Using Multimodel Exponential Discriminant Analysis Algorithm

机译:使用多模型指数判别分析算法工业过程的在线故障诊断

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis is used to identify the fault cause of the online abnormality, which is crucial for efficient and optimal operation of industrial processes. Due to the time-varying characteristics of fault process, the historical fault data may consist of multiple patterns and cannot be described accurately using a single model, which may result in poor performance of conventional multivariable statistical methods. In this brief, a multimodel exponential discriminant analysis (MEDA) algorithm is proposed for solving the aforementioned fault diagnosis problem. First, the samples of each fault class are clustered into different subclasses using the fast search and find of density peaks algorithm and the proposed cluster index. Subsequently, the between-and within-subclass exponential covariance matrices are calculated based on the subclasses and then the multimodel exponential discriminant model can be developed. Finally, recursively update the cluster center and the multimodel exponential discriminant model until the developed subclasses can be well separated and better discriminant performance can be obtained. Besides, a probabilistic MEDA algorithm and its corresponding online probabilistic diagnosis are also described to develop fuzzy model, so that the fault classes whose subclasses have fuzzy boundaries can also be effectively diagnosed. The Tennessee Eastman process is used to validate the diagnosis performance of the proposed MEDA algorithm, and the experimental results illustrate that the proposed algorithm can efficiently diagnose different classes of faults.
机译:故障诊断用于识别在线异常的故障原因,这对于工业过程的高效和最佳运行至关重要。由于故障过程的时变特性,历史故障数据可以由多种图案组成,并且不能使用单个模型来精确描述,这可能导致传统多变量统计方法的性能不佳。在此简述中,提出了一种用于解决上述故障诊断问题的多模型指数判别分析(MEDA)算法。首先,使用快速搜索和查找密度峰值算法和所提出的集群索引,将每个故障类的样本聚集成不同的子类。随后,基于子类计算和 - 子类化指数协方差矩阵基于子类,然后可以开发多模型指数判别模型。最后,递归更新群集中心和多模型指数判别模型,直到开发的子类可以很好地分开,并且可以获得更好的判别性能。此外,还描述了概率的Meda算法及其相应的在线概率诊断来开发模糊模型,使得子类具有模糊边界的故障类也可以有效地诊断出来。田纳西州的Eastman进程用于验证所提出的Meda算法的诊断性能,实验结果说明了所提出的算法可以有效地诊断不同类别的故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号