首页> 外文期刊>IEEE Transactions on Control Systems Technology >Ensemble Kalman Filters for State Estimation and Prediction of Two-Time Scale Nonlinear Systems With Application to Gas Turbine Engines
【24h】

Ensemble Kalman Filters for State Estimation and Prediction of Two-Time Scale Nonlinear Systems With Application to Gas Turbine Engines

机译:集成卡尔曼滤波器用于二次尺度非线性系统的状态估计和预测及其在燃气轮机中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this brief, we propose and develop estimation, prediction, and health monitoring methodologies for nonlinear systems by modeling the damage and degradation mechanism dynamics as "slow" states that are augmented with the system "fast" states. This augmentation results in a two-time scale (TTS) nonlinear system that is utilized for the development of decoupled slow and fast health estimation and prediction modules within a health monitoring framework. Specifically, a TTS filtering approach based on ensemble Kalman filters is developed by taking advantage of the singular perturbation model reduction technique. Our proposed methodology is then applied to a gas turbine engine that is affected by degradation phenomenon due to the turbine erosion. Extensive comparative studies are conducted to validate and demonstrate the advantages and capabilities of our proposed methodology when compared to the well-known nonlinear particle filtering (PF) approach that is commonly utilized in the literature.
机译:在本文中,我们通过将破坏和退化机制动力学建模为“慢”状态,并通过系统“快速”状态进行增强,为非线性系统提出并开发了估计,预测和健康监测方法。这种扩充导致了两倍尺度(TTS)非线性系统,该系统用于在健康监视框架内开发慢速和快速健康估计和预测模块的解耦。具体而言,通过利用奇异摄动模型约简技术开发了基于集成卡尔曼滤波器的TTS滤波方法。然后,将我们提出的方法应用于燃气涡轮发动机,该发动机受涡轮腐蚀造成的退化现象的影响。与文献中常用的众所周知的非线性粒子滤波(PF)方法相比,进行了广泛的比较研究,以验证和证明我们提出的方法的优势和能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号