首页> 外文期刊>Control Systems, IEEE >Evolving Gaussian Processes and Kernel Observers for Learning and Control in Spatiotemporally Varying Domains: With Applications in Agriculture, Weather Monitoring, and Fluid Dynamics
【24h】

Evolving Gaussian Processes and Kernel Observers for Learning and Control in Spatiotemporally Varying Domains: With Applications in Agriculture, Weather Monitoring, and Fluid Dynamics

机译:演化高斯过程和内核观察员在时尚变化的域中的学习和控制:在农业,天气监测和流体动力学中的应用

获取原文
获取原文并翻译 | 示例

摘要

Monitoring and modeling large-scale stochastic phenomena with both spatial and temporal (spatiotemporal) evolution by using a network of distributed sensors is a critical problem in many control applications (see "Summary"). Consider, for example, a team of robots that has the task of destroying herbicide- resistant weeds on a farm (see Figure 1 and "Key Control Problems in Agriculture"). This team must predict weed growth across the whole farm to make intelligent, coordinated decisions [1].
机译:通过使用分布式传感器网络监测和模拟具有空间和时间(时空)演进的大规模随机现象是许多控制应用中的关键问题(参见“摘要”)。例如,考虑一个机器人团队,该团队具有在农场上摧毁除草的杂草的任务(参见农业中的“关键控制问题”)。该团队必须预测整个农场的杂草增长,以使智能协调决策[1]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号