首页> 外文期刊>Control of Network Systems, IEEE Transactions on >Distributed Online Convex Optimization on Time-Varying Directed Graphs
【24h】

Distributed Online Convex Optimization on Time-Varying Directed Graphs

机译:时变有向图的分布式在线凸优化

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a class of discrete-time distributed online optimization algorithms, with a group of agents whose communication topology is given by a uniformly strongly connected sequence of time-varying networks. At each time, a private locally Lipschitz strongly convex objective function is revealed to each agent. In the next time step, each agent updates its state using its own objective function and the information gathered from its immediate in-neighbors at that time. Under the assumption that the sequence of communication topologies is uniformly strongly connected, we design an algorithm, distributed over the sequence of time-varying topologies, which guarantees that the individual regret, the difference between the network cost incurred by the agent's states estimation and the cost incurred by the best fixed choice, grows only sublinearly. This algorithm consists of a subgradient flow along with a push-sum step to adjust for the directed nature of the network topologies. We implement the proposed algorithm in a collaborative localization problem, and the results show the proper performance of the algorithm.
机译:本文介绍了一类离散时间的分布式在线优化算法,该算法具有一组代理,其通讯拓扑由时变网络的统一强连接序列给出。每次都向每个代理揭示局部私有的Lipschitz强凸目标函数。在下一个时间步骤中,每个代理都使用其自己的目标函数和当时从其直接邻居收集的信息来更新其状态。在假设通信拓扑结构的序列被统一地强连接的情况下,我们设计了一种算法,该算法分布在随时间变化的拓扑结构的序列上,该算法可确保个人感到遗憾,即代理商状态估计所产生的网络成本与网络状态之间的差异。最佳固定选择所产生的成本只会线性增长。该算法由子梯度流和推和步骤组成,以针对网络拓扑的有向特性进行调整。我们在协同定位问题中实现了该算法,结果表明了该算法的正确性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号