首页> 外文期刊>Control of Network Systems, IEEE Transactions on >An Information Analysis of Iterative Algorithms for Network Utility Maximization and Strategic Games
【24h】

An Information Analysis of Iterative Algorithms for Network Utility Maximization and Strategic Games

机译:网络公用事业最大化与战略游戏的迭代算法信息分析

获取原文
获取原文并翻译 | 示例

摘要

A variety of resource allocation problems on networked systems, for example, those in cyber-physical systems or Internet-of-things applications, require distributed solution methods. Modern distributed algorithms usually require bandwidth-limited digital communication between the system and its users, who are often modeled as independent decision makers with individual preferences. This paper presents a quantitative information flow and knowledge gain analysis of decentralized iterative algorithms with bounded trajectories in the context of convex network utility maximization problems and strategic games with a unique Nash equilibrium solution. First, a novel generic framework is introduced to quantify knowledge gain in network resource allocation problems using entropy by taking into account priors in the solution space. Second, a general result is presented on the interplay between quantization of information and distributed algorithm performance both for linear and sublinear convergence. Third, information flow in distributed algorithms is studied and a lower bound is derived on the total amount of information exchanged for convergence under uniform quantization. The well-known primal-dual decomposition algorithm is used as an example to illustrate the results. Finally, convergence guarantees for distributed algorithms with estimation are investigated. This paper establishes specific links between information concepts and iterative algorithms in addition to building a foundation for integrating learning schemes into distributed optimization.
机译:例如,网络系统中的各种资源分配问题,例如,网络 - 物理系统或物联网应用程序,需要分布式解决方案方法。现代分布式算法通常需要系统及其用户之间的带宽有限的数字通信,他们通常被建模为具有个人偏好的独立决策者。本文介绍了分散迭代算法的定量信息流程和知识增益分析,在凸网络实用性最大化问题和具有独特纳什均衡解决方案的战略游戏的背景下具有有界轨迹的分散轨迹。首先,引入了一种新的通用框架,以通过熵在解决方案中的考虑到前沿来量化网络资源分配问题中的知识增益。其次,呈现了一般结果,在线性和汇总收敛的信息和分布式算法性能的量化与分布式算法性能之间的相互作用上。第三,研究了分布式算法中的信息流,并导出了在均匀量化下交换的信息总量的总信息量。众所周知的原始双分解算法用作示例以说明结果。最后,研究了具有估计的分布式算法的收敛保证。本文在为将学习计划集成到分布式优化中,建立了信息概念和迭代算法之间的特定链接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号