首页> 外文期刊>Control Engineering Practice >Computing operation procedures for chemical plants using whole-plant simulation models
【24h】

Computing operation procedures for chemical plants using whole-plant simulation models

机译:使用全植物仿真模型计算化工厂的操作程序

获取原文
获取原文并翻译 | 示例

摘要

Chemical plants are complex dynamical systems. Optimising plant operation for non-stationary scenarios, such as changing the output product and recovering from abrupt disturbances, is challenging because a chemical plant has many operation points and complex responses. A plant simulator can be used to compute the optimal procedures. However, because of modelling errors or contingent changes in the external conditions, such as weather and feed purity, there exist gaps between the behaviour of a simulator and that of a real plant. This poses another challenge in a simulator-based approach, which adds to the computational complexity of the problem. In this study, we propose a simulator-based approach for optimising chemical plant operations using deep reinforcement learning and knowledge-based automated reasoning. Specifically, a reinforcement learning agent is trained on a whole-plant simulator with a policy gradient algorithm, using automated reasoning to narrow down the action space of the agent. To maintain the optimality of the procedures in a real plant, a simple method for the state and parameter estimation of the system at run time is introduced. This method can improve the accuracy of the response prediction model (i.e. the plant simulator) on which the agent depends. The presented method is evaluated on a real chemical distillation plant. The experimental results indicate that the proposed approach consumed only half the time and steam (heat energy) in comparison with that in the case of human-emulated procedures.
机译:化学植物是复杂的动力系统。优化用于非静止情景的工厂操作,如改变输出产品并从突发干扰恢复,是具有挑战性的,因为化工厂具有许多操作点和复杂的反应。植物模拟器可用于计算最佳过程。然而,由于外部条件的误差或偶然的变化,例如天气和饲料纯度,模拟器的行为与真实植物的行为之间存在差距。这在基于模拟器的方法中提出了另一个挑战,这增加了问题的计算复杂性。在这项研究中,我们提出了一种基于模拟器的方法,用于利用深度加强学习和基于知识的自动推理优化化学植物操作。具体地,使用策略梯度算法在整个工厂模拟器上培训加强学习代理,使用自动推理来缩小代理的动作空间。为了保持实际工厂中的程序的最优性,介绍了在运行时对系统的状态和参数估计的简单方法。该方法可以提高代理取决于响应预测模型(即植物模拟器)的准确性。该方法在真正的化学蒸馏装置上评价。实验结果表明,与人仿制程序的情况相比,该拟议方法仅消耗了一半的时间和蒸汽(热能)。

著录项

  • 来源
    《Control Engineering Practice》 |2021年第9期|104878.1-104878.10|共10页
  • 作者单位

    NEC-A1ST AI Cooperative Research Laboratory AIST Aomi 2-4-7 Koto-ku Tokyo 135-0064 Japan Data Science Research Laboratories NEC Corporation Shimonumabe 1753 Nakahara-ku Kawasaki Kanagawa 216-8666 Japan;

    NEC-A1ST AI Cooperative Research Laboratory AIST Aomi 2-4-7 Koto-ku Tokyo 135-0064 Japan Data Science Research Laboratories NEC Corporation Shimonumabe 1753 Nakahara-ku Kawasaki Kanagawa 216-8666 Japan;

    NEC-A1ST AI Cooperative Research Laboratory AIST Aomi 2-4-7 Koto-ku Tokyo 135-0064 Japan Department of Information and Communication Engineering The University of Tokyo Hongo 7-3-1 Bunkyo-ku Tokyo 113-8656 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Chemical plant operation; Procedure optimisation; Reinforcement learning; Dynamic simulation; System identification;

    机译:化工厂运行;程序优化;加强学习;动态模拟;系统识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号