首页> 外文期刊>Control Engineering Practice >Adaptive real-time energy management control strategy based on fuzzy inference system for plug-in hybrid electric vehicles
【24h】

Adaptive real-time energy management control strategy based on fuzzy inference system for plug-in hybrid electric vehicles

机译:基于模糊推理系统的插入式混合动力电动汽车自适应实时能源管理控制策略

获取原文
获取原文并翻译 | 示例

摘要

A novel control strategy for the adaptive real-time energy management of a commuter pull-in hybrid vehicle is proposed. The proposed strategy can adapt to various driving conditions so that fuel economy can be improved further in practice. Its main feature is that a fuzzy inference system (FIS) for online estimation of the reference SOC and an adaptive update law with traffic recognition are blended into the main frame of an adaptive-equivalent consumption minimization strategy (A-ECMS). The FIS is established through an adaptive neuro-fuzzy inference system (ANFIS) that is offline trained by the traffic information extracted from historical traffic data and the reference state of charge (SOC) optimized by dynamic programming (DP). The adaptive update law with traffic recognition means that the adaptive equivalent factor (A-EF) of the real-time A-ECMS is adjusted online according to the traffic information in the real route besides the SOC of the vehicle battery. This is because the initial A-EF and the proportional-integral coefficients of the A-EF adjuster are mappings of the SOC and the traffic road segment, and the mappings are optimized by particle swarm optimization (PSO) according to the different initial SOC and the real historical driving cycles of each segment. The proposed strategy is carried out on the simulation test platform integrated GT-Suite simulator and MATLAB/Simulink. The simulation results show that the proposed strategy can reach an optimal energy distribution on a near global optimal level (close to the level of dynamic programming (DP) under the deterministic driving condition). Compared with a rule-based (RB) strategy, the traditional ECMS, an A-ECMS with the linear SOC reference, an A-ECMS with the EF optimized by PSO and an A-ECMS with the A-EF adjusted by a fixed PI feedback controller of the SOC, the fuel consumption is reduced by an average of 22.98% 10.26% 6.52% 2.33% and 5.91% respectively.
机译:提出了一种新的控制策略,用于通勤拉伸混合动力车辆的自适应实时能源管理。所提出的策略可以适应各种驾驶条件,以便在实践中可以进一步提高燃料经济性。其主要特征是,用于在线估计参考SOC的模糊推理系统(FIS)以及具有业务识别的自适应更新法的自适应等效消耗最小化策略(A-ECM)的主框架。通过自适应神经模糊推理系统(ANFIS)建立FIS,该系统由从历史交通数据提取的交通信息和由动态编程(DP)优化的电荷(SOC)提取的交通信息训练。具有业务识别的自适应更新法意味着除车辆电池的SOC之外,根据实时路线中的交通信息在线调整实时A-ECM的自适应等效因子(A-EF)。这是因为A-EF调节器的初始A-EF和比例积分系数是SOC和交通路段的映射,并且根据不同的初始SOC和映射由粒子群优化(PSO)进行优化每个细分的真正历史驾驶周期。所提出的策略是在模拟测试平台集成的GT-Suite Simulator和Matlab / Simulink上进行的。仿真结果表明,该策略可以在近全局最佳水平上达到最佳能量分布(在确定性驾驶条件下接近动态编程(DP))。与基于规则的(RB)策略,传统ECM,带有线性SOC参考的A-ECM的相比,具有由PSO和A-ECM优化的A-ECM的A-ECM,具有由固定PI调整的A-EFM SOC的反馈控制器,燃料消耗量平均降低22.98%10.26%6.52%2.33%和5.91%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号