...
首页> 外文期刊>Control Engineering Practice >Constrained Model Predictive Control for dynamic path tracking of a bi-steerable rover on slippery grounds
【24h】

Constrained Model Predictive Control for dynamic path tracking of a bi-steerable rover on slippery grounds

机译:双可转向漫游器上的动态路径跟踪在滑坡上的受限模型预测控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The research works carried out in this paper deal with the control of a fast double-steering off-road mobile robot. Such kind of robots requires very high stable and accurate controllers because their mobility is particularly influenced by wheel-ground interactions. Hence, the vehicle dynamics should be incorporated in the control circuit to take into account these issues, which is developed based on the road geometry parameters and the slippage-friction conditions at the wheel-ground contacts. Relying on this dynamic model,we present in this paper the design and application of a constrained Model Predictive Control (MPC). It is based on the minimization of a cost function (optimizing the deviation from the reference trajectory, and the variation of the control input) along a finite prediction horizon, however, the prediction horizon is variable according to the forward speed of the robot. On the other hand, this approach incorporates several constraints,essentially important for the stability and safety of an off-road mobile robot moving at the high velocity, namely : saturation and maximum variations of the vehicle's actuators (i.e. steering joints and their speeds limits) as well as the tire adhesion zone bounds (allowing to validate the assumption of a linear tire model). The full optimization problem is formulated as a Linearly Constrained Quadratic Programming (QP) to compute at each time-step the optimal and dynamically-consistent front and rear steering angles that are required to reach the desired path, with respect to all these constraints. The capabilities of our proposed controller are compared with another control law which does not apply any physical or intrinsic constraints. The latter is simply a feedback controller based on the same dynamic model and LQR theory (linear Quadratic Regulator). Both of them have been investigated through several tests on simulations via ROS/GAZEBO and experiments on a real off-road vehicle for different kinds of trajectories and velocity levels.
机译:本文在本文中进行了研究,处理了一种快速双向转向的越野移动机器人。这种机器人需要非常高的稳定和准确的控制器,因为它们的流动性特别受到轮廓相互作用的影响。因此,车辆动态应结合在控制电路中,以考虑这些问题,该问题是基于道路几何参数和车轮接地触点的滑动摩擦条件开发的问题。依靠这种动态模型,我们在本文中存在于约束模型预测控制(MPC)的设计和应用。它基于成本函数的最小化(优化与参考轨迹的偏差,并且控制输入的偏差)沿着有限预测地平线,然而,根据机器人的前进速度,预测地平线是可变的。另一方面,这种方法包括多个约束,对于在高速移动的越野移动机器人的稳定性和安全性,即:车辆致动器的饱和和最大变化(即转向接头及其速度限制),基本上是重要的。以及轮胎粘附区界限(允许验证线性轮胎模型的假设)。完全优化问题被配制为线性约束的二次编程(QP),以在每次步骤中计算到达所需路径所需的最佳和动态 - 一致的前转向角,相对于所有这些约束。与其他控制法相比,我们提出的控制器的能力与不适用任何物理或内在约束的控制法。后者仅仅是基于相同动态模型和LQR理论(线性二次调节器)的反馈控制器。通过ROS / Gazebo对模拟的几次测试进行了调查,并在实际越野车上进行了几次测试,用于不同种类的轨迹和速度水平。

著录项

  • 来源
    《Control Engineering Practice》 |2021年第2期|104693.1-104693.12|共12页
  • 作者单位

    Sorbonne University CNRS UMR 7222 Institut des Systemes Intelligents et de Robotique - ISIR F-75005 Paris France;

    Sorbonne University CNRS UMR 7222 Institut des Systemes Intelligents et de Robotique - ISIR F-75005 Paris France;

    Sorbonne University CNRS UMR 7222 Institut des Systemes Intelligents et de Robotique - ISIR F-75005 Paris France;

    Sorbonne University CNRS UMR 7222 Institut des Systemes Intelligents et de Robotique - ISIR F-75005 Paris France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dynamics; Slippage; Off-road robot; Model Predictive Control; Quadratic programming;

    机译:动力学;滑移;越野机器人;模型预测控制;二次编程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号