首页> 外文期刊>Control Engineering Practice >A new hybrid modeling and optimization algorithm for improving carbon efficiency based on different time scales in sintering process
【24h】

A new hybrid modeling and optimization algorithm for improving carbon efficiency based on different time scales in sintering process

机译:烧结过程中基于不同时间尺度提高碳效率的混合建模与优化新算法

获取原文
获取原文并翻译 | 示例

摘要

Sintering process is a major energy-consumption process in steel making processes. Carbon efficiency, which reflects the level of the energy-consumption, is affected by the raw material variables and the operating variables. This situation makes the process with special dynamic characteristics, especially with different operation periods. However, there is seldom research on carbon efficiency with the multiple time-scale property taken into account. This paper introduces an optimization method for carbon efficiency based on an intelligent multiple time-scale model, which is able to optimize process variables in both long and short time scales. As the comprehensive carbon ratio (CCR) and the ratio between CO and CO2 in exhaust gas (CO/CO2) are taken as the carbon efficiency indexes, a predictive model consisting of two sub-models is developed, one for predicting the state variables with a single neural network (NN), and the other for predicting carbon efficiency indexes with a linear combination of NNs. Then a multi-objective, multi-time-scale optimization framework is designed, which is able to optimize carbon efficiency in two time scales, according to the optimization variables available encountered at different operation periods. Finally, the experimental results based on actual process data shows its feasibility and improvement in carbon efficiency optimization.
机译:烧结过程是炼钢过程中的主要能耗过程。反映能源消耗水平的碳效率受原材料变量和操作变量的影响。这种情况使该过程具有特殊的动态特性,尤其是在不同的操作周期内。但是,很少考虑到多个时间尺度特性,对碳效率进行研究。本文介绍了一种基于智能多时标模型的碳效率优化方法,该方法能够优化长时标和短时标的过程变量。以综合碳比(CCR)和废气中一氧化碳与二氧化碳的比率(CO / CO2)作为碳效率指标,建立了一个由两个子模型组成的预测模型,其中一个用于预测状态变量。一个单一的神经网络(NN),另一个用于通过线性组合的NN预测碳效率指标。然后设计了一个多目标,多时间尺度的优化框架,该框架能够根据在不同运营时期遇到的优化变量,在两个时间尺度上优化碳效率。最后,基于实际过程数据的实验结果表明了其在碳效率优化中的可行性和改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号