首页> 外文期刊>Control Engineering Practice >Improved CCM for variable causality detection in complex systems
【24h】

Improved CCM for variable causality detection in complex systems

机译:改进的CCM用于复杂系统中可变因果关系检测

获取原文
获取原文并翻译 | 示例

摘要

Convergent cross-mapping (CCM), has been largely implemented for variable causality detection in complex systems like chemical process. However, this method is susceptible to problems regarding parameter selection and threshold determination. The synchronization phenomenon and the Moran effect, which are two interference terms in causality detection, must also be addressed. Therefore, an improved CCM is proposed to overcome these limitations in this paper. In the improved CCM, the optimal embedding dimension is selected based on the pseudo-nearest-neighbor theory. Also, Monte Carlo simulation is adopted to evaluate the convergence threshold. Next, by using the defined time delay detection function, the synchronization phenomenon and the Moran effect are identified to reduce the interference terms and further improve the accuracy. Finally, the improved CCM method is applied in a numerical example and a hydrocracking process to demonstrate its feasibility and superior performance than other methods.
机译:收敛交叉映射(CCM)已在化学过程等复杂系统中广泛用于可变因果关系检测。但是,该方法容易出现关于参数选择和阈值确定的问题。同步现象和Moran效应是因果关系检测中的两个干扰项,也必须解决。因此,提出了一种改进的CCM来克服这些限制。在改进的CCM中,基于伪近邻理论来选择最佳嵌入尺寸。此外,采用蒙特卡洛模拟来评估收敛阈值。接下来,通过使用定义的时间延迟检测功能,可以识别同步现象和Moran效应,以减少干扰项并进一步提高精度。最后,将改进的CCM方法应用于数值算例和加氢裂化工艺,以证明其可行性和优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号