首页> 外文期刊>Control Engineering Practice >Semi-supervised mixture of latent factor analysis models with application to online key variable estimation
【24h】

Semi-supervised mixture of latent factor analysis models with application to online key variable estimation

机译:潜在因子分析模型的半监督混合及其在在线关键变量估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

Data-driven virtual sensors have extensive applications in industrial processes for online estimating those important but difficult-to-measure variables. In the virtual sensor application, labeled samples could be very infrequent due to technical or economical limitations, thereby virtual sensors developed upon insufficient labeled samples may not be well trained, which leads to poor estimation performance. In addition, industrial processes are inherently stochastic and the vast majority of them present nonlinear and non-Gaussian characteristics. To cope with these issues, this paper proposes a semi-supervised mixture of latent factor analysis models (S(2)MLFA). In the S(2)MLFA, the insufficiency of labeled samples is remedied by exploiting both labeled and unlabeled data sets, while the nonlinear and non-Gaussian characteristics are handled by the mixture model structure. Moreover, the process uncertainties are modeled by the probabilistic model formulation. An efficient expectation-maximization-based learning algorithm is developed for training the S(2)MLFA, and a modified Akaike information criterion is presented for model selection. The S(2)MLFA is investigated by a numerical example and two real-world industrial processes, through which the effectiveness and feasibility of the proposed schemes are verified.
机译:数据驱动的虚拟传感器在工业过程中具有广泛的应用,可以在线估算那些重要但难以测量的变量。在虚拟传感器应用中,由于技术或经济上的限制,标记的样本可能很少出现,因此在标记不足的样本上开发的虚拟传感器可能没有得到很好的训练,这导致评估性能不佳。此外,工业过程具有内在的随机性,其中绝大多数具有非线性和非高斯特性。为了解决这些问题,本文提出了潜在因子分析模型(S(2)MLFA)的半监督混合。在S(2)MLFA中,通过利用标记和未标记的数据集来纠正标记样本的不足,而非线性和非高斯特性则由混合模型结构处理。此外,过程不确定性通过概率模型公式化来建模。开发了一种有效的基于期望最大化的学习算法来训练S(2)MLFA,并提出了一种改进的Akaike信息准则用于模型选择。通过数值算例和两个实际的工业过程对S(2)MLFA进行了研究,从而验证了所提方案的有效性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号