首页> 外文期刊>Control Engineering Practice >Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks
【24h】

Data-based construction of feedback-corrected nonlinear prediction model using feedback neural networks

机译:基于反馈神经网络的基于数据的反馈校正非线性预测模型的构建

获取原文
获取原文并翻译 | 示例

摘要

We propose to fit a recurrent feedback neural network structure to input--output data through prediction error minimization. The recurrent feedback neural network structure takes the form of a nonlinear state estimator, which can compactly represent a multivariable dynamic system with stochastic inputs. The inclusion of the feedback error term as an input to the model allows the user to update the model based on feedback measurements in real-time uses. The model can be useful in a variety of applications including software sensing, process monitoring, and predictive control. A dynamic learning algorithm for training the recurrent neural network has been developed. Through some examples, we evaluate the efficacy of the proposed method and the prediction improvement achieved by the inclusion of the feedback error term.
机译:我们建议通过预测误差最小化将递归反馈神经网络结构拟合到输入输出数据。递归反馈神经网络结构采用非线性状态估计器的形式,它可以紧凑地表示具有随机输入的多变量动态系统。将反馈误差项作为模型的输入包括在内,允许用户基于实时使用中的反馈测量来更新模型。该模型在包括软件检测,过程监控和预测控制在内的各种应用中可能很有用。开发了一种用于训练递归神经网络的动态学习算法。通过一些示例,我们评估了所提出方法的有效性以及通过包含反馈误差项而实现的预测改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号