首页> 外文期刊>Control Engineering Practice >RBF-ARX model-based nonlinear system modeling and predictive control with application to a NO_x decomposition process
【24h】

RBF-ARX model-based nonlinear system modeling and predictive control with application to a NO_x decomposition process

机译:基于RBF-ARX模型的非线性系统建模和预测控制及其在NO_x分解过程中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper considers the modeling and control problem for nonstationary nonlinear systems whose dynamic characteristics depend on time-varying working-points and may be locally linearized. It is proposed to describe the system behavior by the RBF-ARX model, which is an ARX model with Gaussian radial basis function (RBF) network-style coefficients depending on the working-points of a system. The RBF-ARX model is constructed as a global model, and is estimated off-line so as to avoid the possible failure of on-line parameter estimation during real-time control. A receding horizon predictive control (RBF-ARX-MPC) strategy based on the RBF-ARX model that does not require on-line parameter estimation for the nonlinear system is presented. The local linearization of the system at each working-point may be easily obtained from the global RBF-ARX model and so the use of nonlinear programming techniques to solve the on-line optimization problem with constraints in RBF-ARX-MPC is also avoided. A fast-converging estimation method is applied to optimize the RBF-ARX model parameters. A case study and example of an industrial experiment on the nitrogen oxide (NO_x) decomposition process in thermal power plants are given to demonstrate the modeling precision and control performance.
机译:本文考虑了非平稳非线性系统的建模和控制问题,该系统的动态特性取决于时变工作点,并且可能局部线性化。提出用RBF-ARX模型来描述系统行为,RBF-ARX模型是根据系统的工作点具有高斯径向基函数(RBF)网络样式系数的ARX模型。 RBF-ARX模型被构造为全局模型,并进行离线估计,以避免在实时控制过程中在线参数估计的可能失败。提出了一种基于RBF-ARX模型的后向地平线预测控制(RBF-ARX-MPC)策略,该策略不需要对非线性系统进行在线参数估计。可以从全局RBF-ARX模型中轻松获得系统在每个工作点的局部线性化,因此也避免了使用非线性编程技术来解决RBF-ARX-MPC中存在约束的在线优化问题。应用一种快速收敛的估计方法来优化RBF-ARX模型参数。以火电厂中氮氧化物(NO_x)分解过程为例,并进行了工业实验,以证明其建模精度和控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号