首页> 外文期刊>Engineering Applications of Artificial Intelligence >Nonlinear system modeling and robust predictive control based on RBF-ARX model
【24h】

Nonlinear system modeling and robust predictive control based on RBF-ARX model

机译:基于RBF-ARX模型的非线性系统建模和鲁棒预测控制

获取原文
获取原文并翻译 | 示例

摘要

An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems with unknown steady state. First, the nonlinear system is identified off-line by RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization model and a polytopic uncertain linear parameter-varying (LPV) model are built to approximate the present and the future system's nonlinear behavior, respectively. Subsequently, based on the approximate models, a min-max robust MPC algorithm with input constraint is designed for the output-tracking control of the nonlinear system with unknown steady state. The closed-loop stability of the MPC strategy is guaranteed by the use of parameter-dependent Lyapunov function and the feasibility of the linear matrix inequalities (LMIs). Simulation study to a NO_x decomposition process illustrates the effectiveness of the modeling and robust MPC approaches proposed in this paper.
机译:针对一类未知稳态非线性系统,提出了一种集成建模与鲁棒模型预测控制方法。首先,通过具有线性ARX模型结构和状态相关的高斯RBF神经网络类型系数的RBF-ARX模型离线识别非线性系统。在RBF-ARX模型的基础上,建立了局部线性化模型和多变量不确定线性参数变化(LPV)模型的组合,以分别近似当前和未来系统的非线性行为。随后,基于近似模型,设计了具有输入约束的最小-最大鲁棒MPC算法,用于未知状态的非线性系统的输出跟踪控制。通过使用依赖于参数的Lyapunov函数和线性矩阵不等式(LMI)的可行性,可以保证MPC策略的闭环稳定性。对NO_x分解过程的仿真研究说明了本文提出的建模和鲁棒MPC方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号