首页> 外文期刊>Control Engineering Practice >A dendritic cell mechanism for detection, identification, and evaluation of aircraft failures
【24h】

A dendritic cell mechanism for detection, identification, and evaluation of aircraft failures

机译:用于检测,识别和评估飞机故障的树突状细胞机制

获取原文
获取原文并翻译 | 示例

摘要

Successful fault-tolerant control strategies often require vital tools that can accurately detect the failure, identify its root cause, and evaluate its nature and severity. Most of the existing methodologies in the field of failure detection, identification, and evaluation are limited to few subsystems with reduced number of features. Due to the complexity and multidimensionality of the aircraft system, new methodologies that are robust accurate, and fast enough need to be developed for such systems. The biological immune system is a natural system that possesses vigorous peculiarities in protecting the mammalian body from harmful intruders and, therefore, may represent a rich source of inspiration to solve anomaly problems. This paper presents a novel integrated scheme for aircraft sub-system failure detection, identification, and evaluation based on the functionality of the biological dendritic cells and their interactions with the various components of the immune system. The proposed approach relies on using the selfonself discrimination principle with the hierarchical multiself strategy to overcome the multidimensionality issues. The information collected by the artificial dendritic cells is fused in a way that convert the identification and evaluation problem into a pattern recognition problem. The proposed scheme was successfully tested for a supersonic fighter aircraft in a motion-based flight simulator with high detection, identification, and evaluation rates and practically zero false alarms.
机译:成功的容错控制策略通常需要至关重要的工具,这些工具可以准确地检测故障,确定故障的根本原因并评估其性质和严重性。故障检测,识别和评估领域中的大多数现有方法仅限于功能数量减少的少数子系统。由于飞行器系统的复杂性和多维性,需要为这种系统开发出鲁棒的,准确的和足够快的新方法。生物免疫系统是一种自然系统,在保护哺乳动物机体免受有害入侵者方面具有强大的特性,因此可能代表解决异常问题的丰富灵感来源。本文基于生物树突状细胞的功能及其与免疫系统各个组成部分的相互作用,提出了一种用于飞机子系统故障检测,识别和评估的新型集成方案。所提出的方法依赖于将自我/非自我区分原则与分层多自我策略一起使用来克服多维性问题。人工树突状细胞收集的信息以将识别和评估问题转换为模式识别问题的方式融合。所提出的方案已在超音速战斗机上成功地在基于运动的飞行模拟器中进行了测试,具有很高的检测,识别和评估率,并且误报几乎为零。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号