首页> 外文期刊>Consumer Electronics, IEEE Transactions on >Depth video-based human activity recognition system using translation and scaling invariant features for life logging at smart home
【24h】

Depth video-based human activity recognition system using translation and scaling invariant features for life logging at smart home

机译:基于深度视频的人类活动识别系统,使用平移和缩放不变特征进行智能家居生活记录

获取原文
获取原文并翻译 | 示例

摘要

Video-based human activity recognition systems have potential contributions to various applications such as smart homes and healthcare services. In this work, we present a novel depth video-based translation and scaling invariant human activity recognition (HAR) system utilizing R transformation of depth silhouettes. To perform HAR in indoor settings, an invariant HAR method is critical to freely perform activities anywhere in a camera view without translation and scaling problems of human body silhouettes. We obtain such invariant features via R transformation on depth silhouettes. Furthermore, in R transforming depth silhouettes, shape information of human body reflected in depth values is encoded into the features. In R transformation, 2D feature maps are computed first through Radon transform of each depth silhouette followed by computing 1D feature profile through R transform to get the translation and scaling invariant features. Then, we apply Principle Component Analysis (PCA) for dimension reduction and Linear Discriminant Analysis (LDA) to make the features more prominent, compact and robust. Finally, Hidden Markov Models (HMMs) are used to train and recognize different human activities. Our proposed system shows superior recognition rate over the conventional approaches, reaching up to the mean recognition rate of 93.16% for six typical human activities whereas the conventional PC and IC-based depth silhouettes achieved only 74.83% and 86.33% ,while binary silhouettes-based R transformation approach achieved 67.08% respectively. Our experimental results show that the proposed method is robust, reliable, and efficient in recognizing the daily human activities.
机译:基于视频的人类活动识别系统对智能家居和医疗保健服务等各种应用具有潜在的贡献。在这项工作中,我们提出了一种利用深度轮廓的R变换的新颖的基于深度视频的翻译和缩放不变人类活动识别(HAR)系统。为了在室内环境中执行HAR,不变的HAR方法对于在摄像机视图中的任意位置自由执行活动而不会发生人体轮廓的平移和缩放问题至关重要。我们通过对深度轮廓进行R变换来获得不变性。此外,在R变换深度轮廓中,将在深度值中反映的人体的形状信息编码为特征。在R变换中,首先通过每个深度轮廓的Radon变换来计算2D特征图,然后通过R变换计算1D特征轮廓以获取平移和缩放不变特征。然后,我们应用主成分分析(PCA)进行降维,并应用线性判别分析(LDA)使特征更加突出,紧凑和健壮。最后,隐马尔可夫模型(HMM)用于训练和识别不同的人类活动。我们提出的系统显示出优于常规方法的识别率,六种典型人类活动的平均识别率高达93.16%,而基于PC和IC的常规深度轮廓仅达到74.83%和86.33%,而基于二进制轮廓的R转化方法分别达到67.08%。我们的实验结果表明,该方法在识别人类日常活动中具有鲁棒性,可靠性和高效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号