首页> 外文期刊>Constructive Approximation >The Reproducing Kernel Structure Arising from a Combination of Continuous and Discrete Orthogonal Polynomials into Fourier Systems
【24h】

The Reproducing Kernel Structure Arising from a Combination of Continuous and Discrete Orthogonal Polynomials into Fourier Systems

机译:连续和离散正交多项式组合成傅立叶系统的复制核结构

获取原文
获取原文并翻译 | 示例

摘要

We study mapping properties of operators with kernels defined via a combination of continuous and discrete orthogonal polynomials, which provide an abstract formulation of quantum (q-) Fourier-type systems.We prove Ismail’s conjecture regarding the existence of a reproducing kernel structure behind these kernels, by establishing a link with Saitoh’s theory of linear transformations in Hilbert space. The results are illustrated with Fourier kernels with ultraspherical, their continuous q-extensions and generalizations. As a byproduct of this approach, a new class of sampling theorems is obtained, as well as Neumann-type expansions in Bessel and q-Bessel functions.
机译:我们研究了通过连续和离散正交多项式的组合定义的带有核的算子的映射特性,这些算子提供了量子(q-)傅立叶型系统的抽象表示形式。我们证明了Ismail关于这些核背后是否存在可再生核结构的猜想。通过与Saitoh的希尔伯特空间线性变换理论建立联系。用具有超球形,连续q扩展和推广的傅里叶核说明了结果。作为该方法的副产品,获得了一类新的采样定理,以及Bessel和q-Bessel函数的Neumann型展开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号